
CDS 112: Winter 2014/2015
Solution to Problem Set #1

Solutions to Problem 1(a),(b),(c) M.Burkhardt Jan. 2015

Problem 1(a) Statement: Find the control that brings the bead from its initial state (t0 = 0;
x(t0) = x0; ẋ(t0) = 0) to rest (zero �nal velocity) at the origin of the x axis in minimum time.
The control u is bounded in this case as follows:−2 ≤ u ≤ 1 i.e. the upper and lower control
limits are not symmetrical.

Our state dynamics for parts (a) and (b) are:[
ẋ
ẍ

]
=

[
0 1
0 0

] [
x
ẋ

]
+

[
0
1

]
u (1)

Since our problem is a minimum time problem, our cost functional is:∫ T

t0

1 dt (2)

We can then form the Hamiltonian as: H = 1 + λT (A~x + Bu), where A and B are written
from (1). Written in di�erent terms, H = 1 + λ1ẋ + λ2u. At this point we can turn to the
PMP conditions. First, invoke the condition often called `Pontryagin's Minimum Principle',
i.e. H(u∗, x∗, λ∗) ≤ H(u, x∗, λ∗) for all (t, u∗, λ∗, x∗). This condition will give the form of the
controller:

u∗ =

{
−2 : sign(λ2) > 0

1 : sign(λ2) < 0
(3)

The PMP condition governing the co-state's di�erential equation, i.e. −λ̇ = ∂H
∂x yields:

−λ̇1(t) = 0⇒ λ1 = const = C1 (4)

−λ̇2 = C1 ⇒ λ2 = C1t+ C2 (5)

This problem has a terminal constraint set, ψ(~x(T )) = ~x(T ) = 0, so invoking the PMP
condition that speci�es the �nal co-state value yields λ1(T ) = ν1 and λ2(T ) = ν2, and combining
this result with equations (4) and (5) gives:

λ2(t) = ν1(t− T ) + ν2 (6)

We can obtain more structure by using the PMP condition pertaining to an undetermined
�nal time: H(T ) = 0. This yields 1 + ν2u

∗(T ) = 0. If ν2 > 0, then u∗(T ) = −2 ⇒ ν2 = 1/2,
and if ν2 < 0⇒ ν2 = −1. At this point, we can use the fact that for this problem we must end
up at the origin, which implies that exactly one switch occurs in the control. Also, due to the
asymmetry in the control constraints, we would expect an asymmetrical answer, so for now let's
assume x0 > 0 and we will handle the other case later. Let ts denote the switching time and
integrate the dynamics ẍ = u to obtain:

ẋ(T ) =

∫ ts

t0=0

−2 dt+
∫ T

ts

1 dt+ ẋ(0)⇒ ts = T/3 (7)
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Now integrate the dynamics between [0, T/3] and [T/3, T ], and use the condition that x(T ) =
0 to obtain the result that for x0 > 0⇒ T =

√
3x0. Now we can fully determine the controller.

Using the fact that λ2(ts) = 0, we can relate ν1 to ν2 via:

(2T/3)ν1 = ν2 (8)

And, for the case that x0 > 0 we know that u∗(T ) > 0 ⇒ sign(λ2(T )) < 0 ⇒ ν2 = −1, and
correspondingly ν1 = −(3/2T ). Putting it all together, the deterministic controller for the case
x0 > 0 is given by:

u∗ =

{
−2 : −(3/2T ) ∗ (t−

√
3 ∗ x0)− 1 > 0

1 : −(3/2T ) ∗ (t−
√
3 ∗ x0)− 1 < 0

(9)

So, what changes when x0 < 0? Equations (1-6) remain valid, and the expectation of one
switching time is also valid. Equation (7) is rewritten to be:

ẋ(T ) =

∫ ts

t0=0

1 dt+

∫ T

ts

−2 dt+ ẋ(0)⇒ ts = 2T/3 (10)

Again, integrating the dynamics between [t0, 2T/3] and [2T/3, T ], and using the fact that
x(T ) = 0 will yield the �nal time as T =

√
−3x0, which is not alarming due to the fact that

x0 < 0. Now, using the condition λ2(ts) = 0 we can relate ν1 to ν2 via:

ν1T/3 = ν2 (11)

Knowing that u∗(T ) < 0 ⇒ sign(λ2(T )) > 0 ⇒ ν2 = 1/2, which then implies that ν1 =
3/(2T ). Assembling the controller, which has been fully speci�ed we �nd that:

u∗ =

{
−2 : (3/2T ) ∗ (t−

√
−3 ∗ x0) + 1/2 > 0

1 : (3/2T ) ∗ (t−
√
−3 ∗ x0) + 1/2 < 0

(12)

Problem 1(b) Statement: Let's return to the case of a symmetric bound on the control:
|u| ≤ 1. For the initial conditions, x(t0) = x0 and ẋ(t0) = 0, �nd the control which minimizes

the following objective function:
∫ T

0
1 + αu2 dt, where α > 0. As mentioned in the o�ce hours,

we are only looking for the structural form of the controller, not for the controller to be fully
speci�ed. We can arrive at this by forming the Hamiltonian and applying Pontryagin's Minimum
Principle.

H = 1 + αu2 + λ1ẋ+ λ2u (13)

Note that the only extra terms on the Hamiltonian result from the revised instantaneous
cost L(x, u) between part (a) and part (b). Turning to the PMP condition given above, we can
specify the form of the controller by choosing the optimal controller u∗ such that:

1 + α(u∗)2 + λ∗1ẋ
∗ + λ∗2u

∗ ≤ 1 + αu2 + λ∗1ẋ
∗ + λ∗2u (14)

Due to the fact that the LHS of (14) is quadratic in u∗, we can simply minimize the LHS
with respect to u∗ while respecting the symmetrical constraints on the control. This is justi�ed
since α > 0. So, setting the derivative of the LHS with respect to u∗ equal to zero we obtain:
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u∗ =


−λ2/(2 ∗ α) : |λ2| < 2α

−1 : λ > 2α

1 : λ < −2α
(15)

Why is the controller di�cult to specify in full generality? This controller is di�cult to spec-
ify in general because depending on which part of the phase space we start in either one or two
control switches may be required (one switch from positive to negative within the linear portion
of the controller, and one if a saturation limit is reached). Thus, to fully pin down this control,
we have to enumerate all possible cases, which is tedious and not in the spirit of the assignment.

Problem 1(c) Statement: Now consider the goal of minimizing the energy used by the
system to go from the initial conditions x(t0) = 1 and ẋ(t0) = 1 to a state of rest at the origin.
The goal is to minimize the cost function: (You need not assume any constraints on the cost
function).

J(x, u) =

∫ T=1

0

u2(t) dt (16)

As always, we formulate the Hamiltonian, H = u2+λ1ẋ+λ2u. Since there are no restrictions on
the control, we can let ∂H

∂u = 2u∗(t)+λ2(t) = 0⇒ u∗(t) = − 1
2λ2(t). Turn to the PMP condition

∂H
∂x = −λ̇(t)⇒ λ2(t) = ν1(t− T ) + ν2, where λ1(t) = ν1.

Now that we have the controller speci�ed as a function of ν1 and ν2, we can use the system
dynamics to derive equations to determine these constants.

ẋ(t) =
1

2
(ν1T − ν2)t−

1

4
ν1t

2 + 1 (17)

x(t) =
1

4
(ν1T − ν2)t2 −

1

12
ν1t

3 + t+ 1 (18)

We can then form a system of equations for solve for these two constants using the terminal
conditions provided, under the specialization that T = 1. Solving for this system of equations
yields ν1 = −36 and ν2 = −16. Pluggin this back into our equation for the controller yields:

u∗ = 18t− 10 (19)

Problem #2: In class, and in the notes, we derived, using a �variational� approach, the
ordinary di�erential equations de�ning the optimal control in the case of an optimal control
problem have governing equations:

ẋ = f(x, u)

and cost function:

J(x, u) =

∫ T

0

L(x, u) dt + V (x(T ))

where x is the system state, u is the system control input, L(x, u) is the instantaneous cost of the
control, and V (x(T ) is a terminal penalty function on the terminal system state x(T ) at terminal
time T . The ordinary di�erential equations were derived under the assumption that the intial
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state, x0 was speci�ed, but the �nal state xF was not speci�ed. We also assumed that the �nal
time T was given. In this problem, you are to derive the additional constraints that occur when:

• Part (a): the terminal state is given. I.e., the state at time T is XF . In particular, a
terminal state function ψ(xT ) = 0 is speci�ed.

• Part (b): the terminal time is not speci�ed.

Solution (a): Our goal is to construct the variational of the appropriate cost function, and
show that the vanishing of the variation leads to the desired conditions. The standard integral
cost must be augmented with two underdertermined Lagrange multiplier terms, one for the
dynamics constraint, ẋ = f(x, u), and one for each of the k scalar terminal constraints, ψi(xT ),
i = 1, . . . , k:

J̃ = V (x(T )) +

k∑
i=1

νiψi(x(T )) +

∫ T

0

[L(x, u) + λT (f(x, u)− ẋ)]dt

Following the procedure in the Optimization Based Control notes, which was also reviewed in
class, construct the variation of J̃ , denoted δJ̃ :

δJ̃ = J̃ − J̃∗ = J̃(x∗ + δx, u∗ + δu, λ∗ + δλ, x∗(T ) + δx(T ))− J̃(x∗, u∗, λ∗)

= V (x∗(T ) + δx(T ))− V (x(T )) +

k∑
i=1

νiψi(x(T ) + δx(T ))−
k∑

i=1

ψ(x(T ))

+

∫ T

0

[
H(x∗ + δx, u∗ + δu, λ∗ + δλ)− (λ∗ + δλ)T

d

dt
(x∗ + δx)

]
dt

−
∫ T

0

[H(x∗, u∗, λ∗)− (λ∗)T ẋ∗]dt

=

(
∂V

∂x

)T

δx(T ) +

k∑
i=1

νi

(
∂ψ

∂x
(x(T ))

)T

δx(T )

+

∫ T

0

[(
∂H

∂x

)T

δx+

(
∂H

∂u

)T

δu+

(
∂H

∂λ

)T

δλ− (λ∗)T ˙(δx)− (x∗)T δλ− ˙(δx)
T
δλ

]
dt

where ˙(δx) is short-hand notation for d
dt (δx). This equation can be simpli�ed by �rst noting that

the term involving the product of variations will vanish in the limit of small variations, and the
term involving d

dt (δx) can be rewritting using integration by parts:∫ T

0

(λ∗)
d

dt
(δx)dt = (λ∗)T (0)δx(0) + (λ∗(T ))T δx(T )−

∫ T

0

(λ∗)T δxdt

Substituing in these simpli�cations, and combining terms yields:

δJ̃ =

[
k∑

i=1

νi

(
∂ψ

∂x

)T

− λT +

(
∂V

∂x

)T
]
δx(T )− λT (0)δx(0)

+

∫ T

0

[[(
∂H

∂x

)T

+ (λ̇)T

]
δx+

(
∂H

∂u

)T

δu+

[(
∂H

∂λ

)T

− (ẋ)T

]
δλ

]
dt

4



Since we assume that the initial condition is �xed, δx(0) = 0. For the variation to be stationary
with respect to all small variations, then the terms in brackets before the variations must vanish.
This leads to the standard optimal control equations, plus the additional constraint:

λT =

k∑
i=1

νi

(
∂ψi

∂x

)T

+

(
∂V

∂x

)T

Transposing the equation and denoting ~ν = [ν1, . . . , νk]
T , yields:

~λ =
∂V

∂x
(x(T )) +

(
∂ ~ψ

∂x

)
x=x(T )

~ν.

Solution (b): When the �nal time, T , is not �xed, it is necessary that the cost be stationary
with respect to variations in the �nal time. Building upon the derivation in Part (a), it should
be clear that in the case of variable �nal time, the total variation of J̃ should vanish, where now
we must consider variations in both x(t), u(t) λ(t), as well as the variation in J̃ with respect to
time:

DJ̃ = δJ̃(T ∗) +
dJ

dt

∣∣
t=T∗ = 0.

Since we know that δJ̃(T ∗) = 0 for variations in x(t), u(t) λ(t), we additionally require that
dJ
dt = 0 at the �nal time. The actual form of the cost function J̃ depends upon the problem
conditions. Let's consider the case of a terminal penalty cost, but no terminal constraint:

J̃ = VT (x(T )) +

∫ T

0

[
H(u(t), x(t), y(t)− λT ẋ

]
dt .

Hence,

dJ̃

dt

∣∣
t=T∗ =

[
dVT
dt

+

(
∂V

∂x

)T

ẋ+H(u(t), x(t), y(t))− λT ẋ

] ∣∣
t=T∗ = 0. (20)

But since the vanishing of δJ̃ implies that

λ =
∂V

∂x

Equation (20) simpli�es to: [
dVT
dt

+H(x, u, λ)

]
t=T∗

= 0.

If the terminal penality VT is not an explicit function of time, then the condition simpli�es to
H(x, u, λ)(T ∗) = 0
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