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CDS 112 Lecture 1 
Course Overview/Organization 

Goals for Today: 
• Course administration for CDS 110b 
• Introduce modern (optimization-based) control system 
• Introduction to optimization 
• Conflicts? 

Joel Burdick, jwb@robotics.caltech.edu, X4139, Keck 205 
Assistant: Sonya Lincoln, lincolns@caltech.edu, X3385,  

 
T.A.: Matthew (Matt) Burkhardt, mburkhar@caltech.edu, Keck 208 

mailto:jwb@robotics.caltech.edu
mailto:mkoeper@caltech.edu
mailto:krishna@caltech.edu


2 

Course Admin 
 

Lectures: 
– MWF 1:00-1:55; Annenberg 107 (today).  Then Annenberg 213 thereafter 
 

Web page: 
– https://www.cds.caltech.edu/~murray/wiki/index.php/CDS_112,Winter_2015 
– Copies of any Notes handed out in class, Copies of lecture slides 
– Course text(s)  
– Reading assignments. Homeworks and their solutions (see Schedule page) 
– Course announcements, etc.  

 

Course texts: (all free) 
– R. M. Murray, Optimization-based Control, 2010 Notes/Preprint (link on website) 
– B.D.O.  Anderson & J.B. Moore, Optimal Filtering (link on website) 
– Others:  

• Doyle, Francis, Tannenbaum, Feedback Control Theory, (link on website) 
• Friedland, Control System Design, (in SFL) 
• Other reading: see website 

 

Grading: 
– 70% Homework: ~6 homeworks every ~10 days.  Due at 5:00 pm (box outside 205 Keck) 

Two 2-day grace periods can be used any time during the quarter 
– 30% Final: “open-book,” covering weeks 1-9 
 

http://www.cds.caltech.edu/~macmardg/wiki/index.php?title=CDS_110b,_Winter_2011
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Control System Design: 110 

Design controller 
• Use process model, design in 

frequency domain (Bode, Nyquist) 
• Use process model, design in state-

space with state feedback (pole 
placement) 

 
Robustness to uncertainty 
• Intuitive, through phase & stability 

margins 
 

Goals: 
• Stabilization to a point (maybe unstable 

equilibrium)  
• Tracking (follow simple reference 

trajectory, such as step input) 
• Disturbance rejection (maintain equilibrium 

despite disturbances) 

Process  Controller 

Δ  

Reference 
Output, y 

Uncertainty 
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Control System Design: 112 

Design controller 
• Use process model, design in state-

space with estimator and state 
feedback 

• Generalization of CDS 110 observer  
Robustness to uncertainty 
• Formally, with rigorous analysis    

(CDS 212-213) 
 

Goals: 
• Stabilization (maybe unstable equilibrium) 
• Disturbance rejection (maintain equilibrium 

despite disturbances) 
– Modeled as random variables in CDS 112 
– Modeled as sets in CDS 212. 

• Trajectory generation: Include design of 
reference as part of control design to 
accomplish some higher-level task 

• Tracking (follow unknown reference 
trajectory, possibly with feedforward) 
 

Process  Controller 

Δ  

Estimator Trajectory 
Generation 

x ^ 

e r 
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Classical (110) vs “Modern” (112, 212, 213 …) 
Control Design 

Classical: (1940’s to ~1960) 
• Frequency domain design 
• Graphical tools (Bode, Nyquist, Nichols, Root Locus) 
• Intuition about how to tweak design 
• MIMO hard! 

 
“Modern”: (1960’s to…) 
• State-space (time-domain) 
• MIMO handled automatically 
• Extends to nonlinear more easily 
• Systematic design procedure 
• Optimal design (really starting in 1950’s) 
 
• Key ideas: 

– Analytical specification of control goals 
– Systematic design for minimum “cost” (some performance metric) 
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Classical vs “Modern” Control Design 
Plant 
model: 

Linearize: 

Transfer function 

Design 

Design estimator 

Design state fdbk 

Implement: 

Optimal: CDS 112 
Robust:  CDS 212 



1. Optimization: 
 
 

 
– Optimal state feedback (linear sys. u = –Kx) 
– On-line implementation of optimal control (RHC) 
– Trajectory generation (calculus of variations) 

 
2. Optimal estimation: 

 
 

– Optimization: minimize covariance of estimate error…  
– need to model stochastic processes 
 

3. Robustness 
– How to quantify, analyze, and design for uncertainty 
– Formalizes classical control loop-shaping ideas 
– Connects time- and frequency-domain design 

 
4. More focus on discrete-time control   7 

Course Overview 

Weeks 
1 – 4  

Weeks 
5 – 9  

Week 
10 ?  
(CDS 212) 

J(𝑥, 𝑢, 𝑡, 𝑇)= ∫ 𝑙 𝑥, 𝑢, 𝑡  𝑑𝑑 + 𝑉 𝑥 𝑇 , 𝑢 𝑇  𝑇
0  

𝑥̇ = 𝑓(𝑥, 𝑢, 𝑛) 

Given 

Given 𝑥̇ = 𝑓(𝑥, 𝑢, 𝑛) y= ℎ 𝑥 +  𝜔 

Find best estimate of x: x ^ 



 
• Can include additional constraints on control u, and on state     

(along trajectory or at final time):  
• Final time T may or may not be free (we’ll first derive fixed T case) 

 
• Define        , then this is a problem of minimizing J(z)  

                       subject to constraints G(z)=0 

J(x,u) 

Terminal Cost 

Instantaneous, 
(Stage) Cost 

Optimal Control of Systems 
(Assignment: start Reading Chap. 2 of Optimal Control Notes) 



Function Optimization 
• Necessary condition for optimality is that gradient is zero 

– Characterizes local extrema; need to check sign of second derivative 
– Need convexity to guarantee global optimum 

 

9 Level sets of f(x) 

Gradient of f(x) 
orthogonal to level sets 

Keep this analogy in mind:      
          at an extremum 

lim
∆𝑥→0

𝑓 𝑥∗ + ∆𝑥 − 𝑓(𝑥∗) = 0 

lim
∆𝑥→0

𝑓 𝑥∗ +
𝜕𝜕(𝑥∗)
𝜕𝜕 ∆𝑥 + … . −𝑓(𝑥∗) = 0 



Constrained Function optimization 

• Then at optimal solution, gradient of 
F(x) must be parallel to gradient of 
G(x): 
 
 

• More generally, define: 
 
 

• Then a necessary condition is:  
 
 

• The Lagrange multipliers λ are the 
sensitivity of the cost to a change in G 

Level sets of F(x) 

Constraint G(x)=0 

x* 

Lagrange 
multiplier 



Optimal Control of Systems 

 
• Easy to include additional constraints on control u, and on state 

(along trajectory or at final time) 
• Final time T may or may not be free (I’ll only derive for fixed T) 

 
• Define        , then this is a problem of minimizing J(z)  

                       subject to constraints G(z)=0 

J(x,u) 



Solution approach 
• Add Lagrange multiplier λ(t) for dynamic constraint 

– And additional multipliers for terminal constraints or state constraints 
 

• Form augmented cost functional: 
 
 
 
 

 
 

• where the Hamiltonian is: 

• Necessary condition for optimality:         vanishes for any 
perturbation (variation) in x, u, or λ about optimum: “variations” 

x(t) = x*(t) + δx(t);      u(t) = u*(t) + δu(t);         λ(t) = λ*(t) + δλ (t);    
 

Variations must satisfy path end conditions!  



variation 
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={x(t),u(t),λ(t)} 

δc(t)={δx(t), δu(t), δλ(t)} xT=c(T) 

x0=c(0) 

c(t’) 

δc(t’) 



Derivation… 

 
 
 
 

• Note that (integration by parts): 
 
 

• So:  

We want this to be stationary for all variations 



Pontryagin’s Maximum Principle 
• Optimal (x*,u*)  satisfy: 

 
 
 
 
 
 

•   
• Can be more general and include terminal constraints  
• Follows directly from: 

Optimal control 
is solution to 
O.D.E. 

0 0 

0 0 



Interpretation of λ 

• Two-point boundary value problem: λ is solved backwards in time 
• λ is the “co-state” (or “adjoint” variable) 
• Recall that H = L(x,u) + λTf(x,u) 
• If L=0, λ(t) is the sensitivity of the cost to a perturbation in state x(t) 

– In the integral as   
– Recall δJ = … +λ(0)δx(0) 
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