CDS 112 Lecture 1
Course Overview/Organization

Joel Burdick, j\wb@robotics.caltech.edu, X4139, Keck 205
Assistant: Sonya Lincoln, lincolns@caltech.edu, X3385,

T.A.. Matthew (Matt) Burkhardt, mburkhar@caltech.edu, Keck 208

Goals for Today:

Course administration for CDS 110b

Introduce modern (optimization-based) control system
Introduction to optimization

Conflicts?


mailto:jwb@robotics.caltech.edu
mailto:mkoeper@caltech.edu
mailto:krishna@caltech.edu

Course Admin

Lectures:
— MWEF 1.00-1:55; Annenberg 107 (today). Then Annenberg 213 thereafter

Web page:
— https://www.cds.caltech.edu/~murray/wiki/index.php/CDS 112 ,Winter 2015
— Copies of any Notes handed out in class, Copies of lecture slides
— Course text(s)
— Reading assignments. Homeworks and their solutions (see Schedule page)
— Course announcements, etc.

Course texts: (all free)
— R. M. Murray, Optimization-based Control, 2010 Notes/Preprint (link on website)
— B.D.O. Anderson & J.B. Moore, Optimal Filtering (link on website)
— Others:
* Doyle, Francis, Tannenbaum, Feedback Control Theory, (link on website)
* Friedland, Control System Design, (in SFL)
» Other reading: see website

Grading:
— 70% Homework: ~6 homeworks every ~10 days. Due at 5:00 pm (box outside 205 Keck)
Two 2-day grace periods can be used any time during the quarter
— 30% Final: “open-book,” covering weeks 1-9


http://www.cds.caltech.edu/~macmardg/wiki/index.php?title=CDS_110b,_Winter_2011

Control System Design: 110
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Control System Design: 112
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Design controller Goals:

 Use process model, design in state-
space with estimator and state

Stabilization (maybe unstable equilibrium)
Disturbance rejection (maintain equilibrium

feedback despite disturbances)
* Generalization of CDS 110 observer —  Modeled as random variables in CDS 112
Robustness to uncertainty — Modeled as sets in CDS 212.
 Formally, with rigorous analysis « Trajectory generation: Include design of
(CDS 212-213) reference as part of control design to

accomplish some higher-level task

« Tracking (follow unknown reference

trajectory, possibly with feedforward) .



Classical (110) vs "Modern” (112, 212, 213 ..)
Control Design

Classical: (1940’s to ~1960)

 Frequency domain design

« Graphical tools (Bode, Nyquist, Nichols, Root Locus)
* Intuition about how to tweak design

« MIMO hard!

“Modern”: (1960’s to...)

« State-space (time-domain)

« MIMO handled automatically

« Extends to nonlinear more easily

o Systematic design procedure

« Optimal design (really starting in 1950’s)

o Key ideas:
— Analytical specification of control goals
— Systematic design for minimum “cost” (some performance metric)




Classical vs "Modern" Control Design

Plant r = f(x,u)
model: y :l g(z)
Linearize: z = Az + Bu

y = Cx
Transfer function / \ Design estimator
y(s) = C(sI — A) ' Bu(s) 5 = A7+ L(y— C%) + Bu
= G(s)u(s) Optimal: CDS 112 \{ _
| l Robust: CDS 212 Design state fdbk
Design u = —K(Z—zq)+ uqg
u(s) = —K(s)y(s) /
\

Te = Acxzce+ Bc(y - 7“)

Implement: Cotto 4 ke

U



Course Overview

Given J(x,u,t,T)= fOT [(x,u,t) dt + V(x(T),u(T)) h
1. Optimization: x = f(x,un)
Find v = u(x,t,7) = arg ming J > Weeks
1-4
— Optimal state feedback (linear sys. u = —KXx)
— On-line implementation of optimal control (RHC)
— Trajectory generation (calculus of variations) D
i ¢ — = ™
2. Optimal estimation: | Glven * fxum) y=h(x) +
Find best estimate of x: X . Weeks
— Optimization: minimize covariance of estimate error... 5-9
— need to model stochastic processes D
3. Robustness )
— How to quantify, analyze, and design for uncertainty Week
— Formalizes classical control loop-shaping ideas o~ 10 ?
— Connects time- and frequency-domain design _J  (CDS 212)

4. More focus on discrete-time control v



Optimal Control of Systems

(Assignment: start Reading Chap. 2 of Optimal Control Notes)

Given a system: Instantaneous,
(Stage) Cost

z = f(z,u) z €R" wue RP

Terminal Cost
with z(0) = zo. Then find Srminat =03

u = argmin,co (/OTL(J;, W)dt 4V ((T). um})
N J

~
J(X,u)

Can include additional constraints on control u, and on state

(along trajectory or at final time):

Final time T may or may not be free (we’ll first derive fixed T case)

Define z = [‘/E] , then this is a problem of minimizing J(z)
subject to constraints G(z)=0



Function Optimization

* Necessary condition for optimality is that gradient is zero
— Characterizes local extrema; need to check sign of second derivative
— Need convexity to guarantee global optimum

of
- < =0 Keep this analogy in mind:
ox
/ L at an extremum
e lim {f(x* + Ax) — f(x*)} =0
Ax—0
Gradient of f(x) Af (")
df orthogonal to level sets Alim0 {f(x*) + 3 Ax + ... —f(x*)} =0
7 X X

ox

Level sets of f(x)



Constrained Function optimization

Given F : R" — R and
G;: R" - R,2=1...k,
then find ™ € R"™ such
that G;(z*) = 0Vi and
F(x*) > F(x) for all x
satisfying G;(z) = 0 V.

OF Constraint G(x)=0

oz
>

Level sets of F(x)

Then at optimal solution, gradient of
F(x) must be parallel to gradient of
G(X):

F
O 3% o

ox ox
Lagrange
More generally, define: /multiplier

F=F+)\a

Then a necessary condition is:
OF x
EA A

The Lagrange multipliers 4 are the
sensitivity of the cost to a change in G

@) =0 &=




Optimal Control of Systems

Given a system:

= f(z,u) reR" |lue QCRP

with z(0) = zg. Then find

T
u = argming,co (/0 L(z,uw)dt + V(x2(T), U(T)))
N J

~
J(X,u)

Easy to include additional constraints on control u, and on state

(along trajectory or at final time)

Final time T may or may not be free (I'll only derive for fixed T)

Define z = [‘/E] , then this is a problem of minimizing J(z)
subject to constraints G(z)=0



Solution approach

Add Lagrange multiplier A(t) for dynamic constraint
— And additional multipliers for terminal constraints or state constraints

Form augmented cost functional:
_ T
J(z,u,\) = J(x,u) —I—/O AT (f(x,u) —x)dt
r T
= | (L@w) + 23 (F (@ w) - 2)) dt + V(@(T))
T
= /O (H(:c, U, ) — )\T:i:) dt + V(x(T))

where the Hamiltonianis: H 2 L + \''f

Necessary condition for optimality: §.J vanishes for any
perturbation (variation) in x, u, or A about optimum: “variations”

X(t) = x*(t) + ox(t);  u(t) = u*(t) + du(t); A(t) = A*(t) + oA (1); }

Variations must satisfy path end conditions!



variation

oc(t’)
oc(t)={ox(t), du(t), oAr(t)}

T~ <Ny
h\:\ C(t)a‘“

ngf Lc(t) ={x(t),u(t),A(0)}
‘XO:C(O)

— -
“

13



Derivation...
S =] (x*+ dx,u* + du, A"+ 1) - J(x*,u*,A")
§J = J—J*

SH SH - . /BH YV
~ O s+ P50 2\Ts o —&7) 9] dt+ “en(T
/0 (8:1:' T ot x+(a>\ z ) ) + 5500(T)

* Note that (integration by parts):

Tore. T'T$ T TV ()5
/O)\558— f0>\5+>\ (T)52(T)—AT (0)62(0)

e SO
5‘7:]0 [(23+AT>5;U+%—1351L+ (a—lj—x )5>\] it
+ (20 = AT(1) ) 82(T) + XT(0)52(0)

We want this to be stationary for all variations



Pontryagin's Maximum Principle

e Optimal (X",u”) satisfy:

. (8H)T
T =|——
O\

T
5 = (a_H)
ox

x(0) = xq
T
@ = (5, )

Optimal control
IS solution to
O.D.E.

H{(z" (1), u™ (1), A"(1)) <

H(z*(t),u, \"(t)) Yu €

Q

o If 2 =R"™ and H differentiable then 0H/0u = 0
 Can be more general and include terminal constraints

» Follows directly from:

5j'=/o [(Zfé/

+ (5

0
)\T) ox + —5u —|—

\\fT)) 6z(T') + AT(O)

0

3:T> 5/\

\\>



Interpretation of A

T = (({;—{\I)T z(0) = xg — == f(z,u)
—A= (%)T MT) = (Z—Z :U=:C(T))T

Two-point boundary value problem: A is solved backwards in time
A is the “co-state” (or “adjoint” variable)
Recall that H = L(x,u) + ATf(x,u)
If L=0, A(1) is the sensitivity of the cost to a perturbation in state x(t)
— Inthe integral as A(t)déx
— Recall 8J = ... +A(0)ox(0)
z(rT) =z(r7) +e
= dr =edp(t —7)

;»5J:/--->\T593---=>\T(7)e



	CDS 112 Lecture 1�Course Overview/Organization
	Course Admin
	Control System Design: 110
	Control System Design: 112
	Classical (110) vs “Modern” (112, 212, 213 …) Control Design
	Classical vs “Modern” Control Design
	Course Overview
	Slide Number 8
	Function Optimization
	Constrained Function optimization
	Optimal Control of Systems
	Solution approach
	variation
	Derivation…
	Pontryagin’s Maximum Principle
	Interpretation of 

