Optimal Control of Systems

Given a system: x = f(x,u,n); z € R", ue Q C RP; x(0)=x,

Find the control u(t) for te [0,T] such that

Instantaneous Terminal Cost
(Stage) Cost
M ( / \
u =arglim | L(x,u)dt + V(x(T),u(T))
ueld  J y,
0 Y
J(x,u)

 Can include constraints on control u and state x
— (along trajectory or at final time):

« Final time T may or may not be free (we’ll first derive fixed T case)



Function Optimization

* Necessary condition for optimality is that gradient is zero
— Characterizes local extrema; need to check sign of second derivative
— Need convexity to guarantee global optimum

of
/ N\ Keep this analogy in mind:
Z /0\ at an extremum
e lim {f(x* 4+ Ax) — f(x*)} =0
Ax—0
Gradient of f(x) If (x*)
orthogonal to level sets Al)icr_r)lo {f(x*) + P Ax + ... — f(x*)} =0

ox



Constrained Function optimization

Given F : R" — R and
G;: R" - R,2=1...k,
then find ™ € R"™ such
that G;(z*) = 0Vi and
F(x*) > F(x) for all x
satisfying G;(z) = 0Vi.

oG |
e Constraint G(x)=0
?.
S

OF

— Level sets of F(x)
ox

At the optimal solution, gradient of
F(x) must be parallel to gradient of
G(X):

OF oG

—+A—=0
8a:+ ox

Consider:

oG
E Constraint G(x)=0

=

OF

IT | evel sets of F(x)



Constrained Function optimization

Given F : R" — R and
G;: R" - R,2=1...k,
then find ™ € R"™ such
that G;(z*) = 0Vi and
F(x*) > F(x) for all x
satisfying G;(z) = 0Vi.

oG |
e Constraint G(x)=0
?.
S

Level sets of F(x)

At the optimal solution, gradient of
F(x) must be parallel to gradient of
G(X):

OF |  9G
— A —=0

ox ox
Lagrange
More generally, define: /multiplier

F=F+)\a

Then a necessary condition is:
OF x
EA A

The Lagrange multipliers 4 are the
sensitivity of the cost to a change in G

@) =0 &=




Solution approach

Add Lagrange multiplier A(t) for dynamic constraint
— And additional multipliers for terminal constraints or state constraints

Form augmented cost functional:
_ T
J(z,u,\) = J(x,u) —I—/O AT (f(x,u) —x)dt
r T
= | (L@w) + 23 (F (@ w) - 2)) dt + V(@(T))
T
= /O (H(:c, U, ) — )\T:i:) dt + V(x(T))

where the Hamiltonianis: H 2 L + \''f

Necessary condition for optimality: §.J vanishes for any
perturbation (variation) in x, u, or A about optimum: “variations”

X(t) = x*(t) + 5x(t);  u(t) = u*(t) + Su(b); M) =AY + oA (O); }

Variations must satisfy path end conditions!



variation

oc(t’)
dc(t)={ox(t), du(t), dA(L)} x=c(T)
\ Y I
\ I =
.""‘-.. C(t 5\'“--,_:?_'*__'_ R ’&
;:'E""'II;;/:III"-.,IL b :H _ _:.;& -
'

[ e ={x(t),ut) ()}

X,=C(0)



Derivation...
S =] (x*+ dx,u* + du, A"+ 1) - J(x*,u*,A")
§J = J—J*

SH SH - . /BH YV
~ O s+ P50 2\Ts o —&7) 9] dt+ “en(T
/0 (8:1:' T ot x+(a>\ z ) ) + 5500(T)

* Note that (integration by parts):

Tore. T'T$ T TV ()5
/O)\558— f0>\5+>\ (T)52(T)—AT (0)62(0)

e SO
5‘7:]0 [(23+AT>5;U+%—1351L+ (a—lj—x )5>\] it
+ (20 = AT(1) ) 82(T) + XT(0)52(0)

We want this to be stationary for all variations



Pontryagin's Maximum Principle

Optimal (X",u”) satisfy:

. (8H)T
T =|——
O\

T
5 = (a_H)
ox

H{(z" (1), u™ (1), A"(1)) <

x(0) = xq
T
@ = (5, )

H(z*(t),u, \"(t)) Yu €

Q

o If 2 =R"™ and H differentiable then 0H/0u = 0

Can be more general and include terminal constraints
Follows directly from:

5j'=/o KaH )\T)éx—l——éu—l—

+ (5

oV
ox

0

\\fT)) 6x(T) + A1(0)dz

0

Optimal control
IS solution to
O.D.E.

Unbounded
controls

3:T> 5/\

\\>



Interpretation of A

T = (({;—{\I)T z(0) = xg — == f(z,u)
—A= (%)T MT) = (Z—Z :U=:C(T))T

Two-point boundary value problem: A is solved backwards in time
A is the “co-state” (or “adjoint” variable)
Recall that H = L(x,u) + ATf(x,u)
If L=0, A(1) is the sensitivity of the cost to a perturbation in state x(t)
— Inthe integral as A(t)déx
— Recall 8J = ... +A(0)ox(0)
z(rT) =z(r7) +e
= dr =edp(t —7)

;»5J:/--->\T593---=>\T(7)e



Terminal Constraints

Assume ¢ terminal constraints of the form: w(x(T))=0
 Then

] d
M) = (Z) (x(m) + (5L) oy v
 Where v is a set of undetermined Lagrange Multipliers

« Under some conditions, v is free, and therefore A(T) is free as well

When the final time T is free (i.e., it is not predetermined), then the cost function
J must be stationary with respect to perturbations T: T* + 3T. In this case:

H(T) =0
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General Remarks

PMP equations in general very hard to solve
— Linear system with quadratic costs

. [ = fOT(xTQx+ uT Ru) dt + xT(T)Sx(T)

« Closed Form solution exists: u(t) = -K(t) x(t)
» We will study this case in detall

For some problems, PMP conditions can lend insight into the
properties of the solution:

— e.g., bang-bang control (we'll see this later)

— Used to understand limits of performance, and characteristics...

« Adjoint Equation: Weather forecasting: what measurements are most
useful to make?

« What perturbations most likely to lead to an El Nifio event?

— Real-time implementation of full non-linear limited to relatively simple
systems (e.g. chemical plants, Mars entry/descent/landing (EDL),...)
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Example: Bang-Bang Control

Consider time optimal control of linear system

- x =Ax + Bu
— x(0) =x0; X(T) =x¢ ; @(x(T)) = xp — x(T)
~ ul < 1; J=J, 1dt <

Apply PMP:

“minimum time control”

e H=L+ATf=1+AT(Ax +Bu)=1+(ATA)x + (ATB)u

. x=(g—:)T=Ax+Bu

« u=argmin(H) = - sgn(AT B)

* J.e., control uis +1 or -1 1n value

Since H is linear w.r.t. u, -—="
minimization occurs at boundary

—_

N

+
=
C

:

\
v
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Linear system, Quadratic cost

1 /7T
r = Ax + Bu J=—/ (a:TQ:c—I—uTRu)dt
2J0
Apply PMP:
v T
A=-A"A+Qzx BT selects the part of the state

Ru = —BT) < that is influenced by u, so BT\ is
sensitivity of aug. state cost to u

Guess that A(t)=P(t)x(t):
—P=PA+ATP+Q-PBRIBTP P(T) =0
w=—-R1BTPx

XTPx has an interpretation as the “cost to go”
Often see the infinite-horizon solution where dP/dt=0
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