
With assumptions 
– Ak, Bk, Hk are constant matrices 
– xk is the state at time tk;       uk is the control at time tk 
– the initial state x0 is Gaussian distributed with mean �̅�0 and covariance P0 

 

                     𝑝 𝑥0 = 1
(2𝜋)𝑛|𝑃0|

𝑒−
1
2 𝑥0−�̅�0

𝑇𝑃0−1(𝑥0−�̅�0)           where |𝑃0|=det(𝑃0) 
 

– Both ηk ,ωk  are zero mean, Gaussian, and “white” random processes 
• 𝜂𝑘 ∼ 𝑁 0,𝑄𝑘 ;                 𝜔𝑘∼ 𝑁 0,𝑅𝑘  
• 𝐸 𝜂𝑘  𝜂𝑙𝑇 = 𝑄𝑘  𝛿𝑘𝑙;       𝐸 𝜔𝑘  𝜔𝑙𝑇 = 𝑅𝑘  𝛿𝑘𝑙   (uncorrelated across time) 

• 𝜂𝑘 ,𝜔𝑘 , and 𝑥0 are independent (which implies uncorrelated) 
 
  

Estimation: Recap 
Given the discrete time system 

𝑦𝑘 = 𝐻𝑘𝑥𝑘 + 𝜔𝑘;           
𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 + 𝐺𝑘  η𝑘;           

Find state estimate which minimizes a loss function: 



Jointly Gaussian Random Variables 
If CRVs 𝑥1, 𝑥2,⋯ , 𝑥𝑛 are jointly distributed, then ∃ 𝑝 𝑥1,⋯ , 𝑥𝑛  such that: 

Joint Gaussian Variables can be represented by a joint pdf: �⃗� = 𝑁(𝜇,𝐾) 

– �⃗� =  
𝑥1
⋮
𝑥𝑛

;              �⃗� = 𝐸 �⃗� ;           𝐾 = 𝐸[ �⃗� − �⃗� �⃗� − �⃗� 𝑇] 

 

Affine transformation of jointly Gaussian CRVs is jointly Gaussian CRV: 
– Let �⃗� ∼ 𝑁 𝜇,𝐾 .       Then    𝐴 𝑥  + 𝑏 ∼ 𝑁(𝐴�⃗� + 𝑏,𝐴𝐾𝐴𝑇) 
 

P 𝑥1𝑙 ≤ 𝑥1 ≤  𝑥1𝑢;  ⋯ ;𝑥𝑛𝑙 ≤ 𝑥𝑛  ≤  𝑥𝑛𝑢 ≡ � ⋯� 𝑝 𝑥1, … , 𝑥𝑛 𝑑𝑥1 ⋯
𝑥𝑛𝑢

𝑥𝑛𝑙
𝑑𝑥𝑛

𝑥1𝑢

𝑥1𝑙
 

Defn: A collection of CRVs 𝑥1, 𝑥2,⋯ , 𝑥𝑛 are “jointly Gaussian” if 

�𝑎𝑖𝑥𝑖

𝑛

𝑖=1

 

Is a Gaussian CRV for any real {𝑎𝑖}  𝑖 = 1, … ,𝑛 
 
 



Jointly Gaussian Random Variables 
Partial Proof: (see Anderson & Moore Appendix A for full details) 

– Mean: 𝐸 𝐴�⃗� + 𝑏 = 𝐸 𝐴�⃗� + 𝐸 𝑏 = 𝐴 𝐸 �⃗� + 𝑏 = 𝐴�⃗� + 𝑏; 

– Variance:       

𝐸  𝐴�⃗� + 𝑏 − 𝐴�⃗� + 𝑏 𝐴�⃗� + 𝑏 − 𝐴�⃗� + 𝑏 =
𝐸[ 𝐴 �⃗� − �⃗� 𝐴 �⃗� − �⃗�) 𝑇  = 𝐴 𝐸 �⃗� − �⃗� �⃗� − �⃗� 𝑇 𝐴𝑇 = 𝐴 𝐾 𝐴𝑇  

Fact: Jointly Gaussian RVs are independent iff they are uncorrelated 



Conditional Density of Jointly 
Gaussian RVs 

Assume that x (state) and y (measurements) are jointly Gaussian RVs Let 
𝑧 = �⃗�  �⃗� 𝑇 

– Mean:  z� = 𝐸 �⃗�
�⃗� = 𝐸 �̅�

𝑦�                   Variance: 𝑄𝑧𝑧 =  
𝑄𝑥𝑥 𝑄𝑥𝑥
𝑄𝑥𝑥 𝑄𝑥𝑥

,  𝑄𝑥𝑥 = 𝑄𝑥𝑥𝑇  
 

Goal: find 𝑝 �⃗� �⃗� , which will define the probability of the state given 
measurements (with n=dim(x) and m=dim(y)):  

𝑝 𝑥 𝑦 =  
𝑝(𝑥,𝑦)
𝑝(𝑦)

=
2𝜋 𝑛+𝑚 𝑄𝑧𝑧 −1/2

2𝜋 𝑚 𝑄𝑥𝑥
−1/2

𝑒−
1
2 𝑧−�̅� 𝑇𝑄𝑧𝑧−1(𝑧−�̅�)

𝑒−
1
2 𝑥−𝑥� 𝑇𝑄𝑦𝑦−1(𝑥−𝑥�)

 

 
 

How do we simplify this? 
– Find expression for 𝑄𝑧𝑧  
– Simplify exponents 

 

                                                           



Conditional Density (continued) 

𝑝 �⃗� �⃗� =  
𝑝(�⃗�,𝑦)
𝑝(𝑦)

=
2𝜋 𝑛+𝑚 𝑄𝑧𝑧 −1/2

2𝜋 𝑚 𝑄𝑥𝑥
−1/2

𝑒−
1
2 𝑧−�̅� 𝑇𝑄𝑧𝑧−1(𝑧−�̅�)

𝑒−
1
2 𝑥−𝑥� 𝑇𝑄𝑦𝑦−1(𝑥−𝑥�)

 

Determinant: 

If 𝑇 = 𝐼 −𝑄𝑥𝑥𝑄𝑥𝑥−1

0 𝐼
, then    𝑇𝑄𝑧𝑧𝑇𝑇 =

(𝑄𝑥𝑥 − 𝑄𝑥𝑥𝑄𝑥𝑥−1𝑄𝑥𝑥𝑇 ) 0
0 𝑄𝑥𝑥

≡ ∑ 
 

Then: det 𝑇𝑄𝑧𝑧𝑇𝑇 = det 𝑇 det 𝑄𝑧𝑧 det 𝑇 = det 𝑄𝑧𝑧  
                               = det 𝑄𝑥𝑥 det 𝑄𝑥𝑥 − 𝑄𝑥𝑥𝑄𝑥𝑥−1𝑄𝑥𝑥𝑇 = 𝑄𝑥𝑥  𝑄𝑥|𝑥  
Exponent: 

(𝑧 − 𝑧̅)𝑇𝑄𝑧𝑧 𝑧 − 𝑧̅ =  �⃗� − �̅�
�⃗� − 𝑦�

𝑇
𝑇−1Σ𝑇−𝑇 −1 �⃗� − �̅�

�⃗� − 𝑦�         

                              = �⃗� − �̅�𝑥|𝑥
T

Q𝑥|𝑥
−1 �⃗� − �̅�𝑥|𝑥 + �⃗� − 𝑦� TQ𝑥𝑥

−1(�⃗� − 𝑦�)  
 

Where:   �̅�𝑥|𝑥 = �̅� + 𝑄𝑥𝑥𝑄𝑥𝑥−1 �⃗� − 𝑦�  
                   𝑄𝑥|𝑥= 𝑄𝑥𝑥 − 𝑄𝑥𝑥𝑄𝑥𝑥−1𝑄𝑥𝑥𝑇  
 
                                                           



Substitute the newly derived expressions into p(x|y) to yield: 
 

𝑝 �⃗� �⃗� =
2𝜋 𝑛+𝑚 𝑄𝑥𝑥 𝑄𝑥|𝑥

−1/2

2𝜋 𝑚 𝑄𝑥𝑥
−1/2

𝑒−
1
2 �⃗�−𝜇�𝑥|𝑦

T
Q𝑥|𝑦
−1 �⃗�−𝜇�𝑥|𝑦 + 𝑥−𝑥� TQ𝑦𝑦−1 𝑥−𝑥� 𝑇

𝑒−
1
2 𝑥−𝑥� 𝑇𝑄𝑦𝑦−1(𝑥−𝑥�)

 

 

              =
1

2𝜋 𝑛 𝑄𝑥|𝑥
1/2 𝑒

−12 �⃗�−𝜇�𝑥|𝑦
𝑇
𝑄𝑥|𝑦
−1 �⃗�−𝜇�𝑥|𝑦  

 
 

Result: The Conditional Density is a Gaussian pdf 
 
Next: Develop expressions for each of the key terms 

Conditional Density (continued) 



Consider the system: 
 
 
Where 𝜂𝑘 is white, Gaussian, and zero mean: 
 
 

                      ⋮ 
 
 

Where Φ𝑘,𝑙 = 𝐴𝑘−1𝐴𝑘−2 ⋯𝐴𝑙        and     Φ𝑘,𝑘 = 𝐼 
 
From (*), �⃗�𝑛 is a linear combination of �⃗�0(Gaussian RV) and linear 
transform of process noise samples (drawn from Gaussian).  Since they 
are assumed independent, they are “jointly Gaussian” 

Linear Discrete Time Systems 

�⃗�𝑘+1 = 𝐴𝑘�⃗�𝑘 + 𝐵𝑘𝑢𝑘 + 𝐺𝑘  η𝑘  =  𝐴𝑘�⃗�𝑘 + 𝐺𝑘  η𝑘;           

�⃗�𝑘+2 = 𝐴𝑘+1�⃗�𝑘+1 + 𝐺𝑘+1  η𝑘+1  =  𝐴𝑘+1𝐴𝑘�⃗�𝑘 + 𝐴𝑘+1𝐺𝑘  η𝑘 + 𝐺𝑘+1 η𝑘+1;           

�⃗�𝑛 = Φ𝑛,0𝑥0 +� Φ𝑛,𝑙+1
𝑛−1

𝑙=0
𝐺𝑙 η𝑙     (∗) 

Add constant term later  



Proposition: (see Appendix A of Anderson & Moore) 
– Linear transformation and additions of Gaussian RVs are Gaussian RVs 
– ∴ �⃗�𝑛 is a Gaussian RV 
 

Measurement Equation  
– �⃗�𝑘 = 𝐻𝑘�⃗�𝑘 + 𝜔𝑘 is the sum of two independent Gaussians, and 

therefore jointly Gaussian  
– ∴ �⃗�𝑛 is a Gaussian RV 
 

Means of these Gaussians: 
– �̅�𝑛 = 𝐸[�⃗�𝑛] = 𝐸[Φ𝑛,0�⃗�0 +∑ Φ𝑛,𝑙+1

𝑛−1
𝑙=0 𝐺𝑙 η𝑙] 

          = Φ𝑛,0𝐸 �⃗�0 +∑ Φ𝑛,𝑙+1
𝑛−1
𝑙=0 𝐺𝑙 𝐸[η𝑙] =    Φ𝑛,0�̅�0  

• Note Recursion:  �̅�𝑛+1 = 𝐴𝑛�̅�𝑛  
 

– 𝐸 �⃗�𝑘 = 𝐸 𝐻𝑘�⃗�𝑘 + 𝜔𝑘 = 𝐻𝑘𝐸 �⃗�𝑘 + 𝐸 𝜔𝑘 = 𝐻𝑘�̅�𝑘 
 

 

Linear Discrete Time Systems 



Covariance of the Gaussian state distribution: 

– 𝑃𝑘,𝑙 = 𝐸 �⃗�𝑘 − �̅�𝑘 �⃗�𝑙 − �̅�𝑙 𝑇  
          = 𝐸 [Φ𝑘,0(�⃗�0 − �̅�0) +∑ Φ𝑘,𝑚+1

𝑘−1
𝑚=0 𝐺𝑚 η𝑚][Φ𝑙,0(�⃗�0 − �̅�0) +∑ Φ𝑙,𝑛+1

𝑙−1
𝑛=0 𝐺𝑛 η𝑛]𝑇  

– But (x0 − x�0), and �⃗�0, �⃗�1, … , �⃗�𝑘−1 are independent, while �⃗�0, �⃗�1, … , �⃗�𝑘−1 are 
uncorrelated. The expectation of many product terms will be zero. 

– E.g. 𝐸 �⃗�0𝜂𝑘𝑇 = 𝐸 �⃗�0 𝐸 𝜂𝑘𝑇 = 𝐸 �⃗�𝑘 ⋅ 0 = 0    (since 𝜂𝑘 is zero mean) 

– E.g. 𝐸 𝜂𝑗𝜂𝑘𝑇 = 0  for 𝑗 ≠ 𝑘 

– 𝑃𝑘,𝑙 = Φ𝑘,0𝐸 �⃗�0 − �̅�0 �⃗�0 − �̅�0 𝑇 Φ𝑙,0
𝑇 + ∑ Φ𝑘,𝑚+1𝐺𝑚𝑄𝑚𝐺𝑚𝑇Φ𝑙,𝑚+1

𝑇𝑙−1
𝑚=0  

– We will be particularly interested in 𝑃𝑘,𝑘, which can be found recursively! 

• 𝑃𝑘+1,𝑘+1 = 𝐴𝑘𝑃𝑘,𝑘𝐴𝑘𝑇 + 𝐺𝑘𝑄𝑘𝐺𝑘𝑇           (state covariance propagation)  
 

Linear Discrete Time Systems 

Dynamic  
covariance 
propagation 

Effect of 
Process 
Noise 



Covariance of the Gaussian measurement distribution: 

– �⃗�𝑘 = 𝐻𝑘�⃗�𝑘 + 𝜔𝑘  

– 𝑐𝑐𝑐 𝑦𝑘 , 𝑦𝑙 = 𝐸 �⃗�𝑘 − 𝑦�𝑘 �⃗�𝑙 − 𝑦�𝑙 𝑇  
                      = 𝐸 𝐻𝑘 �⃗�𝑘 − �̅�𝑘 + 𝜔𝑘 𝐻𝑘 �⃗�𝑘 − �̅�𝑘 + 𝜔𝑘 𝑇  

– But 𝜔𝑘 is independent of �⃗�𝑘 − �̅�𝑘  since �⃗�𝒌, �̅�𝑘  are functions of �⃗�0 and 
𝜂0, 𝜂1, … , 𝜂𝑘−1, which are independent of 𝜔𝑘 

– ∴ 𝑐𝑐𝑐 𝑦𝑘 , 𝑦𝑙 = 𝐻𝑘Φ𝑘,0𝑃0,0Φ𝑙,0
𝑇 𝐻𝑙𝑇 + 𝑅𝑘𝛿𝑘,𝑙 

–  Recursion: 𝑐𝑐𝑐 𝑦𝑘 , 𝑦𝑘 = 𝐻𝑘𝑃𝑘,𝑘H𝑘
𝑇 + 𝑅𝑘 

 
 

Linear Discrete Time Systems 

Effect of state 
uncertainty on 
measurement 
uncertainty 

Effect of 
measurement 
noise 
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