Estimation: Recap

Given the discrete time system
Xp+1 = ApXp + Brug + Gy N
Yk = HpXg + wg;

With assumptions

- A,, By, H, are constant matrices

— X, Is the state at time t,; u, is the control at time t,

— the initial state x, is Gaussian distributed with mean x, and covariance P,
—%(xo—fo)TPo_l(xo—fo)

1
p(XO) = me where |P0|:det(P0)

— Both 7,0, are zero mean, Gaussian, and “white” random processes
o Mg ~ N(O,Qr), wi~ N(0, Ry)
. E[nk mT] = Q Oki; E[a)k a){] = Ry O0); (uncorrelated across time)
* 1k, Wi, and x, are independent (which implies uncorrelated)

Find state estimate which minimizes a loss function:



Jointly Gaussian Random Variables
If CRVs x4, x,, -*+, x,, are jointly distributed, then 3 p(x4, :*+, x,,) such that:
Py S xp < Xy 5% S Xy S Xpy) = jxlu“‘jxnup(xp ey X )Xy -+ dxy

X1l Xnl

Defn: A collection of CRVS x4, x5, :*, x,, are “jointly Gaussian” if

n
E a;xi

i=1
Is a Gaussian CRV foranyreal {a;} i=1,...,n

Joint Gaussian Variables can be represented by a joint pdf: x = N(u, K)
X1
- f=[5‘; = E[X]; K=E[E-@DE-D"]
Xn

Affine transformation of jointly Gaussian CRVs is jointly Gaussian CRV:
— Leti~N(@K). Then Af{x} +b ~ N(Aji+ b, AKAT)



Jointly Gaussian Random Variables

Partial Proof: (see Anderson & Moore Appendix A for full details)
— Mean: E[A% + b] = E[AX] + E[b] = AE[X] + b = Aji + b;
— Variance:

E|[(AX + b) — (A + B)][(AX + b) — (A + b)]| =
E[[AZ - DA -D]I" | =AE[K - DE - @D)"]A" =AK A"

Fact: Jointly Gaussian RVs are independent iff they are uncorrelated



Conditional Density of Jointly
Gaussian RVs

Assume that x (state) and y (measurements) are jointly Gaussian RVs Let
z =[x yI"

. = .7_C) _ f . . _ Qxx Qxy _ T

Mean: z=FE [}7] =F L_]] Variance: Q,, = Qe ny], Qxy = Qyx

Goal: find p(x|y), which will define the probability of the state given
measurements (with n=dim(x) and m=dim(y)):

p(x,y)  [2m)"™|Q,I17? e—%(z—z‘)TQz‘zl(z—z—)
p(y) [(zn)mmw”—l/z

p(xly) =
0 —%(y—s‘/)TQy‘yl =)

How do we simplify this?
— Find expression for |Q,,]|
— Simplify exponents



Conditional Density (continued)

p(%,y) [QCm)"™M|Ql —1/2 —5(2 -7z (z-2)
r(y) [(2”)’"|ny|] 1/2

p(X|y) =

(y_Y)Tny (y—37)

Determinant:

(Qxx Qnyyg}Qxy) ] — Z
0 ny B

Then: det(TQ,,TT) = det(T) det(Q,,) det(T) = det(Q,,)
= det(ny) det(Qxx Qnyy Qxy) = |QYY| |QX|Y|

If T = [’ Qx;vny] then TQ,,TT =

Exponent:

(F— D)7 Qu(7 - 7) = [ ] (T-15T-T)" 1[y i

= (x _ :“xly) Qx|y(x - :ux|y) + (y - }—,)TQ;)ll(}-; - )

Where: /1x|y x+Qnyy (y y)
Qx|y Qxx Qnylexy



Conditional Density (continued)

Substitute the newly derived expressions into p(x|y) to yield:

(2 m|gggflauy |77 e 310" (=) +5-55055G-57]

p(X|y) = - - -
[emm|gg] o3I (-7)

! Ty Qi)
— € 2 xly) Cx|y\X~Hx|y
[(21)"| @y |]

Result: The Conditional Density is a Gaussian pdf

Next: Develop expressions for each of the key terms



Linear Discrete Time Systems

Consider the system: Add constant term later

Xi+1 = ApXy +}(D{+ G Mk = ArXy + G Mg

Where 7, is white, Gaussian, and zero mean:
X2 = Aks1Xirr + Grar Mkr1 = Axs1AiXi + Aps1 G Mie + G Nier 1

n-1

fn = CI)n,Oxo + cI)n,l+1 G ﬁl (*)

Whel’e q)k,l — Ak—lAk—Z Al and q)k,k — I

From (*), x,, is a linear combination of x,(Gaussian RV) and linear
transform of process noise samples (drawn from Gaussian). Since they
are assumed independent, they are “jointly Gaussian”



Linear Discrete Time Systems

Proposition: (see Appendix A of Anderson & Moore)
— Linear transformation and additions of Gaussian RVs are Gaussian RVs
- &~ X, is a Gaussian RV

Measurement Equation

- yx = HyXxy + wy, is the sum of two independent Gaussians, and
therefore jointly Gaussian

- = Yy, is a Gaussian RV

Means of these Gaussians:
- X, = E[¥,] = E[®y 0% + X150 Pris1 G 1]
= &, oE[X,] +Z111=_01 Gp1v1 G EM] = PpoXo

* Note Recursion: x,,; = A, X,

- E[yx] = E[HyXyx + W] = HYE[Xy] + E[wy] = Hp Xy,



Linear Discrete Time Systems

Covariance of the Gaussian state distribution:
- Py = E[(X — %) (% — )]
= E{[®,0(Xo — %o) + 252 Prms1 G Tim] [Pr0(Fo — %o) + 2520 Prns1 Gn TnlT}

— But (X, — Xp), and 1y, 14, ..., Tx—1 are independent, while 1j,, 14, ..., 1 are
uncorrelated. The expectation of many product terms will be zero.

— E.g. E[%7%| = E[%,]E|7ix] = E[%] -0 =0 (since 7y is zero mean)
— E.g. E[imi| =0 forj =k
- Pk,l = ch,OE[(fO - fo)(fo — fO)T]CDZO + 257;=10 CI)k,m+1GmQn‘LGg:LCDZ,Wm+1

— We will be particularly interested in Py, ;, which can be found recursively!

 Pri1ks1 = AkPk,kAi + G, QxGE (state covariance propagation)
Dynamic ' ' Effect of
covariance Process

propagation Noise



Linear Discrete Time Systems

Covariance of the Gaussian measurement distribution:

- Y = HpXp + wy

- cov(yr, y1) = Elr — ¥) 01 — y)"]
= E{[Hx (X — %) + 0] [Hy (X, — %) + g 1"}

— But wy, is independent of (X, — X3) since X, X; are functions of x, and
No, N1, - Mk—1, Which are independent of wy

- 2 cov(ie, y1) = Hi®p0Po o Pl oH] + Ry

— Recursion: cov(yy, yx) = H P Hf + Ry

e

Effect of state Effect of
uncertainty on measurement
measurement noise
uncertainty
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