Recap

Defn: A collection of CRVs X_1, X_2, \dots, X_n are "jointly Gaussian" if

is a Gaussian CRV for any real $\{a_i\}$ i = 1, ..., n. Or, if the joint pdf of two CRVs *x*, *y* can be expressed as

 $\sum_{i=1}^{n} a_i X_i$

$$p(x,y) = \frac{1}{2\pi\sigma_x\sigma_y[1-\rho^2]^{1/2}} e^{-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\bar{x})^2}{\sigma_x^2} - \frac{2\rho(x-\bar{x})(y-\bar{y})}{\sigma_x\sigma_y} + \frac{(y-\bar{y})^2}{\sigma_y^2}\right]}$$

Where $\rho = \frac{E[(x-\bar{x})(y-\bar{y})]}{\sigma_x \sigma_y} =$ "correlation coefficient"

• X and Y are *uncorrelated* if $\rho = 0$, or equivalently, E[XY] = E[X]E[Y]since $E[(x - \bar{x})(y - \bar{y})] = E[XY] - E[X]E[Y]$

Reality: vectors of Gaussian RVs are jointly Gaussian.

Proposition: (Appendix A of Anderson & Moore) Linear transformation and additions of Gaussian RVs are Gaussian RVs

Recap

$$x_{k+1} = A_k x_k + B_k u_k + G_k \eta_k;$$

$$y_k = H_k x_k + \omega_k;$$

Since x_0 is Gaussian distributed, and η_k is zero mean white Gaussian,

- x_k is a jointly Gaussian RV for each k

Since x_k is Gaussian distributed, and ω_k is zero mean white Gaussian,

- y_k is a jointly Gaussian RV for each k

Conditional pdf of joint Gaussian variables is Gaussian:

$$p(\vec{x}|\vec{y}) = \frac{1}{\left[(2\pi)^n \left|Q_{x|y}\right|\right]^{1/2}} e^{-\frac{1}{2}(\vec{x} - \overline{\mu}_{x|y})^T Q_{x|y}^{-1}(\vec{x} - \overline{\mu}_{x|y})}$$

Where

$$\bar{\mu}_{x|y} = \bar{x} + Q_{xy}Q_{yy}^{-1}(\vec{y} - \bar{y}) \qquad \qquad Q_{x|y} = Q_{xx} - Q_{xy}Q_{yy}^{-1}Q_{xy}^{T}$$

I.e, what do measurements \vec{y} tell us about state \vec{x} ?

Linear Discrete Time Systems

Means of state and measurement Gaussians:

- $\ \bar{x}_n = \ \Phi_{n,0} \bar{x}_0 ; \quad \Rightarrow \quad \bar{x}_{n+1} = A_n$
- $\bar{y}_k = E[H_k \vec{x}_k + \vec{\omega}_k] = H_k \bar{x}_k$

Covariance of state and measurement Gaussians:

$$- P_{k+1,k+1} = A_k P_{k,k} A_k^T + G_k Q_k G_k^T;$$

$$- cov(y_k, y_k) = H_k P_{k,k} \mathbf{H}_k^T + R_k$$

Next: Select a criteria for estimator design

- Minimum Covariance

Minimum Variance Design

Estimator is a random function

- Takes measurements y_1, y_2, \dots, y_n as input, and produces a random variable, \hat{X}_n , with \hat{x}_n as a specific estimate.
- The variance associated with the estimator is the "uncertainty" in the estimate. Minimum variance design is the "least uncertain"

Minimum Variance Design (Kalman 1960)

- Choose the state estimate, \hat{x}_k , according to

$$\min_{\hat{x}_k} E[(X_k - \hat{x}_k)^T (X_k - \hat{x}_k)]$$
 (*)

- Note, the cost function is a *scalar*, as opposed to nxn covariance

$$E[(X_k - \hat{x}_k)(X_k - \hat{x}_k)^T]$$
 (**)

- Lemma: Let \vec{x} be a vector CRV, and let $||\vec{x}|| = \sqrt{E[\vec{x}^T x]}$. Then

• $||A\vec{x}||^2 = E[\vec{x}^T A^T A\vec{x}] = trace\{E[A^T A\vec{x}\vec{x}^T]\}$

• If A=I,
$$||\vec{x}||^2 = E[\vec{x}^T\vec{x}] = trace[E[\vec{x}\vec{x}^T]]$$

So, minimizing(*) minimizes trace of (**)

Minimum Variance Estimator

Theorem 3.1 (Anderson & Moore, p. 26)

- Let X, Y be two joint distributed (not necessarily Gaussian) vector Rvs.
 Let Y be the "measurement," which takes value y.
- The minimum variance estimate is given by the *conditional mean* of X given Y.

$$\hat{x} = E[X|Y = y] = \int_{-\infty}^{\infty} x \, p(x|y) dx$$

- Proof: (Brute force—see Anderson & Moore p. 27)

Consequence: With jointly Gaussian state (*x*) and measurements (*y*),

- Mean:
$$E\begin{bmatrix} \vec{x} \\ \vec{y} \end{bmatrix} = E\begin{bmatrix} \bar{x} \\ \bar{y} \end{bmatrix}$$
 Variance: $\begin{bmatrix} \Sigma_{xx} & \Sigma_{xy} \\ \Sigma_{yx} & \Sigma_{yy} \end{bmatrix}$, $\Sigma_{xy} = \Sigma_{yx}^T$

- The minimum variance estimate of \vec{x} given \vec{y}

$$\hat{x} = \bar{x} + \Sigma_{xy} \Sigma_{yy}^{-1} (\vec{y} - \bar{y}) \qquad \qquad \Sigma_{x|y} = \Sigma_{xx} - \Sigma_{xy} \Sigma_{yy}^{-1} \Sigma_{xy}^T$$