

		<u> </u>
Estimator is a ra	indom function	
- Takes mea variable, \hat{X}	asurements y_1, y_2, \cdots, y_n as input, and \hat{x}_n , with \hat{x}_n as a specific estimate.	produces a random
 The variar estimate. 	ce associated with the estimator is the Minimum variance design is the "least	e "uncertainty" in the tuncertain"
Minimum Variar	nce Design (Kalman 1960)	
 Choose th 	e state estimate, \hat{x}_k , according to	
	$\min_{\hat{x}_k} E[(X_k - \hat{x}_k)^T (X_k - \hat{x}_k)]$	(*)
 Note, the of 	cost function is a <i>scalar</i> , as opposed to	o nxn covariance
	$E[(X_k - \hat{x}_k)(X_k - \hat{x}_k)^T]$	(**)
– Lemma: L	et \vec{x} be a vector CRV, and let $ \vec{x} = \sqrt{2}$	$\sqrt{E[\vec{x}^T x]}$. Then
• $ A\vec{x} ^2$	$= E[\vec{x}^T A^T A \vec{x}] = trace\{E[A^T A \vec{x} \vec{x}^T]\}$	
• If A=I,	$ \vec{x} ^2 = E[\vec{x}^T \vec{x}] = trace[E[\vec{x} \vec{x}^T]]$	
 So, minimi 	zing(*) minimizes trace of (**)	

Minimum Variance Estimator

Theorem 3.1 (Anderson & Moore, p. 26)

- Let *X*, *Y* be two joint distributed (not necessarily Gaussian) vector Rvs.
 Let *Y* be the "measurement," which takes value *y*.
- The minimum variance estimate is given by the *conditional mean* of X given Y.

$$\hat{x} = E[X|Y = y] = \int_{-\infty}^{\infty} x \, p(x|y) dx$$

- Proof: (Brute force-see Anderson & Moore p. 27)

Consequence: With jointly Gaussian state (*x*) and measurements (*y*),

- Mean:
$$E\begin{bmatrix}\vec{x}\\\vec{y}\end{bmatrix} = E\begin{bmatrix}\vec{x}\\\vec{y}\end{bmatrix}$$
 Variance: $\begin{bmatrix}\Sigma_{xx} & \Sigma_{xy}\\\Sigma_{yx} & \Sigma_{yy}\end{bmatrix}$, $\Sigma_{xy} = \Sigma_{yx}^T$

- The minimum variance estimate of \vec{x} given \vec{y}

$$\hat{x} = \bar{x} + \Sigma_{xy} \Sigma_{yy}^{-1} (\vec{y} - \bar{y}) \qquad \qquad \Sigma_{x|y} = \Sigma_{xx} - \Sigma_{xy} \Sigma_{yy}^{-1} \Sigma_{xy}^T$$