Minimum Variance Design

Estimator is a random function

- Takes measurements y_1, y_2, \dots, y_n as input, and produces a random variable, \hat{X}_n , with \hat{x}_n as a specific estimate.
- The variance associated with the estimator is the "uncertainty" in the estimate. Minimum variance design is the "least uncertain"

Minimum Variance Design (Kalman 1960)

 The minimum variance estimate of state X given measurements Y is given by the conditional mean of X given Y.

$$\hat{x} = E[X|Y = y] = \int_{-\infty}^{\infty} x \, p(x|y) dx$$

With jointly Gaussian state (x) and measurements (y),

- Mean:
$$E\begin{bmatrix} \vec{x} \\ \vec{y} \end{bmatrix} = E\begin{bmatrix} \bar{x} \\ \bar{y} \end{bmatrix}$$
 Variance: $\begin{bmatrix} \Sigma_{xx} & \Sigma_{xy} \\ \Sigma_{yx} & \Sigma_{yy} \end{bmatrix}$, $\Sigma_{xy} = \Sigma_{yx}^T$

- The minimum variance estimate of \vec{x} given \vec{y}

$$\hat{x} = \bar{x} + \Sigma_{xy} \Sigma_{yy}^{-1} (\vec{y} - \bar{y}) \qquad \Sigma_{x|y} = \Sigma_{xx} - \Sigma_{xy} \Sigma_{yy}^{-1} \Sigma_{xy}^{T}$$

Recursive Construction of Kalman Filter (KF)

Initial system state, x_0 , is Gaussian distributed: $x_0 \sim N(\bar{x}_0, P_{00})$

- Assume measurement $y_0 = H_0 x_0 + \omega_0$. Then x_0, y_0 are joint Gaussian:

$$\begin{bmatrix} x_0 \\ y_0 \end{bmatrix} \sim N \left(\begin{bmatrix} \bar{x}_0 \\ H_0 \bar{x}_0 \end{bmatrix}, \begin{bmatrix} P_{00} & P_{00} H_0^T \\ H_0 P_{00} & H_0 P_{00} H_0^T + R_0 \end{bmatrix} \right)$$

- The estimate of state x_0 at time t_0 given measurements at t_0 is
 - $\hat{x}_{0|0} = \bar{x}_0 + P_{00}H_0^T(H_0P_{00}H_0^T + R_0)^{-1}(y_0 H_o\bar{x}_0)$
- Because the estimate is a conditional mean, the associated variance is:

•
$$\Sigma_{0|0} = P_{00} - P_{00}H_0^T (H_0P_{00}H_0^T + R_0)^{-1}H_0P_{00}$$

Let's propagate the state estimate to time t_1

- The system equation is: $x_1 = A_0x_0 + B_0u_0 + G_0\eta_0$
- If a Gaussian CRV is substituted into the x_0 "slot," then x_1 will be a Gaussian CRV with
 - $\hat{x}_{1|0} = E[A_0 \hat{x}_{0|0} + B_0 u_0 G_0 \eta_0] = A_0 \hat{x}_{0|0} + B_0 u_0$
 - $\Sigma_{1|0} = A_0 \Sigma_{0|0} A_0^T + G_0 Q_0 G_0^T$

Recursive Construction of KF

The *predicted* measurement at time t_1 , and its uncertainty:

$$- \hat{x}_{k+1|k} = A_k \hat{x}_{k+1|k} + B_k u_k$$

$$- cov(\hat{y}_{1|0}, \hat{y}_{1|0}) = H_1 \Sigma_{1|0} H_1^T + R_1$$

$$- \begin{bmatrix} \hat{x}_{1|0} \\ \hat{y}_{1|0} \end{bmatrix} \sim N \begin{pmatrix} \begin{bmatrix} \hat{x}_{1|0} \\ H_1 \hat{x}_{1|0} \end{bmatrix}, \begin{bmatrix} \Sigma_{1|0} & \Sigma_{1|0} H_1^T \\ H_1 \Sigma_{1|0} & H_1 \Sigma_{1|0} H_1^T + R_1 \end{bmatrix} \end{pmatrix}$$

Now in corporate a measurement time t_1 , and use formulae for conditional mean and its variance

•
$$\hat{x}_{1|1} = \hat{x}_{1|0} + \Sigma_{1|0}H_1^T (H_1\Sigma_{1|0}H_1^T + R_1)^{-1} (y_1 - H_1\hat{x}_{1|0})$$

•
$$\Sigma_{1|1} = \Sigma_{1|0} - \Sigma_{1|0} H_1^T (H_1 \Sigma_{1|0} H_1^T + R_1)^{-1} H_1 \Sigma_{1|0}$$

Recursive Construction of KF

By induction, the KF has a *2-step* structure:

- Dynamic (time) update)
 - $\bullet \ \hat{x}_{k+1|k} = A_k \hat{x}_{k+1|k} + B_k u_k$
 - $\Sigma_{k+1|k} = A_k \Sigma_{k|k} A_k^T + G_k Q_k G_k^T$
- Measurement Update

"residual," "innovation"

•
$$\hat{x}_{k+1|k+1} = \hat{x}_{k+1|k} + K_{k+1}(y_{k+1} - H_{k+1}\hat{x}_{k+1|k})$$

• $\Sigma_{k+1|k+1} = \Sigma_{k+1|k} - \Sigma_{k+1|k} H_{k+1}^{T} (H_{k+1} \Sigma_{k+1|k} H_{k+1}^{T} + R_{k+1})^{-1} H_{k+1} \Sigma_{k+1|k}$ $= (I - K_{k+1} H_{k+1}) \Sigma_{k+1|k} = \Sigma_{k+1|k} (I - H_{k+1}^{T} K_{k+1}^{T})$

Where the "Kalman Gain" is:

$$-K_{k+1} = \Sigma_{k+1} H_k^T \left(H_{k+1} \Sigma_{k+1|k} H_{k+1}^T + R_{k+1} \right)^{-1}$$
"How much do I trust the model?"

"How much do I trust the measurements?"