Probability for Estimation (review)

In general, we want to develop an estimator for systems of the form:

 $\dot{x} = f(x, u) + \eta(t);$ $y = h(x) + \omega(t);$ given y, find \hat{x}

We will primarily focus on *discrete time linear systems*

$$\begin{aligned} x_{k+1} &= A_k x_k + B_k u_k + \eta_k; \\ y_k &= H_k x_k + \omega_k; \end{aligned}$$

Where

- A_k , B_k , H_k are constant matrices
- x_k is the state at time t_k ; u_k is the control at time t_k
- $-\eta_k$, ω_k are "disturbances" at time t_k

Goal: develop procedure to model disturbances for estimation

- Kolmogorov probability, based on axiomatic set theory
- 1930's onward

Axioms of Set-Based Probability

Probability Space:

- Let Ω be a set of experimental outcomes (e.g., roll of dice)

 $\Omega = \{A_1, A_2, \dots, A_N\}$

- the A_i are "elementary events" and subsets of Ω are termed "events"
- Empty set {Ø} is the "impossible event"
- S={Ω} is the "certain event"
- A probability space (Ω , F,P)
 - $F = set of subsets of \Omega$, or "events", P assigns probabilities to events

Probability of an Event—the Key Axioms:

- Assign to each A_i a number, $P(A_i)$, termed the "probability" of event A_i
- $P(A_i)$ must satisfy these axioms
 - 1. $P(A_i) \ge 0$
 - 2. P(S) = 1
 - 3. If events $A, B \in \Omega$ are "mutually exclusive," or disjoint, elements or events $(A \cap B = \{\emptyset\})$, then

 $P(A \cup B) = P(A) + P(B)$

Axioms of Set-Based Probability

As a result of these three axioms and basic set operations (e.g., DeMorgan's laws, such as $\overline{A \cup B} = \overline{A} \cap \overline{B}$)

- P({Ø})=0
- − $P(A) = 1 P(\overline{A}) \implies P(A) + P(\overline{A}) = 1$, where \overline{A} is complement of A
- If A_1, A_2, \dots, A_N mutually disjoint

 $P(A_1 \cup A_1 \cup \cdots \cup A_N) = P(A_1) + P(A_1) + \cdots + P(A_N)$

For Ω an infinite, but countable, set we add the "Axiom of infinite additivity"

3(b). If $A_1, A_2, ...$ are mutually exclusive,

$$P(A_1 \cup A_1 \cup \dots) = P(A_1) + P(A_1) + \dots$$

We assume that all countable sets of events satisfy Axioms 1, 2, 3, 3(b)

But we need to model uncountable sets...

Continuous Random Variables (CRVs)

Let $\Omega = \mathbb{R}$ (an uncountable set of events)

- *Problem:* it is not possible to assign probabilities to subsets of \mathbb{R} which satisfy the above Axioms
- Solution:
 - let "events" be intervals of \mathbb{R} : A = { $x \mid x_l \le x \le x_u$ }, and their <u>countable</u> unions and intersections.
 - Assign probabilities to these events

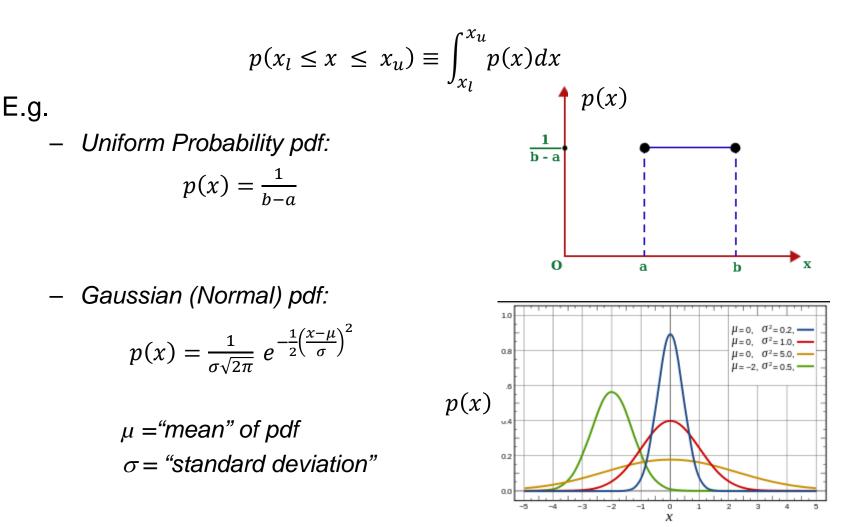
 $P(x_l \le x \le x_u) = Probability that x takes values in [x_l, x_u]$

• *x* is a *"continuous random variable* (CRV).

Some basic properties of CRVs

- If x is a CRV in [L, U], then $P(L \le x \le L) = 1$
- If y in [L, U], then $P(L \le y \le x) = 1 P(y \le x \le U)$

Probability Density Function (pdf)



Most of our Estimation theory will be built on the Gaussian distribution

Joint & Conditional Probability

Joint Probability:

- Countable set of events: $P(A \cap B) = P(A,B)$, probability A & B both occur
- *CRVs:* let x, y be two CRVs defined on the same probability space. Their *"joint probability density function"* p(x,y) *is defined as:*

$$P(x_l \le x \le x_u; y_l \le y \le y_u) \equiv \int_{y_l}^{y_u} \int_{x_l}^{x_u} p(x, y) dx dy$$

- Independence
 - A, B are independent if P(A,B) = P(A) P(B)
 - x, y are independent if p(x, y) = p(x) p(y)

Conditional Probability:

- *Countable events:* $P(A|B) = \frac{P(A \cap B)}{P(B)}$, probability of A given that B occurred
 - E.G. probability that a "2" is rolled on a fair die given that we know the roll is even:
 - P(B) = probability of even roll = 3/6=1/2
 - $P(A \cap B) = 1/6$ (since $A \cap B = A$)
 - $P(2|\text{even roll}) = P(A \cap B)/P(B) = (1/6)/(1/2) = 1/3$

Conditional Probability & Expectation

Conditional Probability (continued):

- CRV:
$$p(x|y) = \begin{cases} \frac{p(x,y)}{p(y)} & \text{if } 0 < p(y) < \infty \\ 0 & \text{otherwise} \end{cases}$$

- This follows from:

$$P(x_l \le x \le x_u \mid y) \equiv \int_{x_l}^{x_u} p(x|y) dx = \frac{\int_{x_l}^{x_u} p(x,y) dx}{p(y)}$$

- and: $p(x) = \int_{-\infty}^{\infty} p(x, y) dy = \int_{-\infty}^{\infty} p(x|y) p(y) dy$

Expectation: (key for estimation)

- Let x be a CRV with distrubution p(x). The expected value (or mean) of x is $E[x] = \int_{-\infty}^{\infty} xp(x)dx \qquad E[g(x)] = \int_{-\infty}^{\infty} g(x)p(x)dx$
- Conditional mean (conditional expected value) of x given event M:

$$E[x|M] = \int_{-\infty}^{\infty} xp(x|M)dx$$

Expectation (continued)

Mean Square:

$$E[x^{2}] = \int_{-\infty}^{\infty} x^{2} p(x) dx$$
Variance:

$$\sigma^{2} = E[(x - \mu)^{2}] = \int_{-\infty}^{\infty} (x - \mu)^{2} p(x) dx$$

$$\mu(x) = E[x]$$

Random Processes

A stochastic system whose state is characterized a time evolving CRV, x(t), t ϵ [0,T].

- At each t, x(t) is a CRV
- -x(t) is the "state" of the random process, which can be characterized by

$$\mathsf{P}[x_l \le x(t) \le x_u] = \int_{-\infty}^{\infty} p(x, t) dx$$

Random Processes can also be characterized by: – Joint probability function $P[x_{1l} \le x(t_1) \le x_{1u}; x_{2l} \le x(t_2) \le x_{2u}] = \int_{x_{1l}}^{x_{1u}} \int_{x_{2l}}^{x_{2u}} p(x_1, x_2, t_1, t_2) dx_1 dx_2$

- Correlation Function $E[x(t_1)x(t_2)] = \int_{-\infty}^{\infty} x_1 x_2 p(x_1, x_2, t_1, t_2) dx_1 dx_2 \equiv \rho(t_1, t_2)$ Correlation function
- A random process x(t) is **Stationary** if $p(x,t+\tau)=p(x,t)$ for all τ

Vector Valued Random Processes

 $\bar{X}(t) = \begin{bmatrix} X_1(t) \\ \vdots \\ X_n(t) \end{bmatrix} \text{ where each } X_i(t) \text{ is a random process}$

 $R(t_{1}, t_{2}) = \text{``Correlation Matrix''} = E[\bar{X}(t_{1})\bar{X}^{T}(t_{2})]$ $= \begin{bmatrix} E[X_{1}(t_{1})X_{1}(t_{2})] & \cdots & E[X_{1}(t_{1})X_{n}(t_{2})] \\ \vdots & \ddots & \vdots \\ E[X_{n}(t_{1})X_{1}(t_{2})] & \cdots & E[X_{n}(t_{1})X_{n}(t_{2})] \end{bmatrix}$

 $\sum(t) = \text{``Covariance Matrix''} = E[(\bar{X}(t) - \bar{\mu}(t))(\bar{X}(t) - \bar{\mu}(t))^T]$ Where $\mu(t) = E[\bar{X}(t)]$