
Probability for Estimation (review) 
In general, we want to develop an estimator for systems of the form: 
 
 

 
We will primarily focus on discrete time linear systems 

�̇� = 𝑓 𝑥, 𝑢 + η(𝑡);           
y = ℎ 𝑥 + 𝜔(𝑡);           

𝑔𝑔𝑔𝑔𝑔 𝑦, 𝑓𝑔𝑔𝑓 𝑥�  

𝑦𝑘 = 𝐻𝑘𝑥𝑘 + 𝜔𝑘;           
𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 + η𝑘;           

Where  
– Ak, Bk, Hk are constant matrices 
– xk is the state at time tk; uk is the control at time tk 
– ηk ,ωk  are “disturbances” at time tk 

 

Goal: develop procedure to model disturbances for estimation 
– Kolmogorov probability, based on axiomatic set theory 
– 1930’s onward 



Axioms of Set-Based Probability 
Probability Space: 

– Let Ω be a set of experimental outcomes (e.g., roll of dice) 
 

• the Ai are “elementary events” and subsets of Ω are termed “events” 
• Empty set {∅} is the “impossible event” 
•  S={Ω} is the “certain event” 

– A probability space (Ω, F,P) 
• F = set of subsets of Ω, or “events”, P assigns probabilities to events 

 
 

Ω = 𝐴1, 𝐴2, … , 𝐴𝑁  

Probability of an Event—the Key Axioms: 
– Assign to each Ai a number, P(Ai), termed the “probability” of event Ai 
– P(Ai) must satisfy these axioms 

1. P(Ai) ≥ 0 
2. P(S)  = 1 
3. If events A,B ϵ Ω are “mutually exclusive,” or disjoint, elements or 

events (A∩B= {∅}), then  

P A ∪ B = 𝑃 𝐴 + 𝑃(𝐵) 



Axioms of Set-Based Probability 
As a result of these three axioms and basic set operations (e.g., 
DeMorgan’s laws, such as 𝐴 ∪ 𝐵=𝐴 ∩ 𝐵)  

– P({∅})=0 
– P(A) = 1-P(𝐴)    ⇒   P(A) + P(𝐴) = 1, where 𝐴 is complement of A 
– If 𝐴1, 𝐴2, … , 𝐴𝑁 mutually disjoint 
 

For Ω an infinite, but countable, set we add the “Axiom of infinite 
additivity”  

3(b). If 𝐴1, 𝐴2, …  are mutually exclusive,  
 

 

We assume that all countable sets of events satisfy Axioms 1, 2, 3, 3(b) 
 
But we need to model uncountable sets… 

P 𝐴1 ∪ 𝐴1 ∪ ⋯ ∪ 𝐴𝑁 = 𝑃 𝐴1 + 𝑃 𝐴1 + ⋯ + 𝑃(𝐴𝑁) 

P 𝐴1 ∪ 𝐴1 ∪ ⋯ = 𝑃 𝐴1 + 𝑃 𝐴1 + ⋯ 



Continuous Random Variables (CRVs) 
Let Ω = ℝ (an uncountable set of events)  

– Problem: it is not possible to assign probabilities to subsets of ℝ which 
satisfy the above Axioms 

– Solution:  
• let “events” be intervals of ℝ:   A  = {x | xl ≤ x ≤ xu}, and their countable 

unions and intersections. 
• Assign probabilities to these events 

 

• x is a “continuous random variable (CRV). 
 

 

P 𝑥𝑙 ≤ 𝑥 ≤  𝑥𝑢 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑔𝑖𝑔𝑡𝑦 𝑡ℎ𝑃𝑡 𝑥 𝑡𝑃𝑡𝑔𝑡 𝑔𝑃𝑖𝑢𝑔𝑡 𝑔𝑔 [𝑥𝑙 , 𝑥𝑢 ] 

Some basic properties of CRVs 
– If x is a CRV in 𝐿, 𝑈 , then P(L ≤ x ≤ L) = 1 
– If y in 𝐿, 𝑈 , then P(L ≤ y ≤ x) = 1 - P(y ≤ x ≤ U) 

 



Probability Density Function (pdf) 

E.g.  
– Uniform Probability pdf:     

                    𝑝 𝑥 = 1
𝑏−𝑎

 

 
 
– Gaussian (Normal) pdf: 

            𝑝 𝑥 = 1
𝜎 2𝜋
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    µ =“mean” of pdf 
    σ = “standard deviation” 

      
          

𝑝 𝑥𝑙 ≤ 𝑥 ≤  𝑥𝑢 ≡ � 𝑝 𝑥 𝑓𝑥 
𝑥𝑢

𝑥𝑙

 

𝑝 𝑥  

𝑝 𝑥  

Most of our Estimation theory will be built on the Gaussian distribution 



Joint & Conditional Probability 
Joint Probability:  

– Countable set of events:  P A ∩ B  = P(A,B), probability A & B both occur 
– CRVs: let x,y be two CRVs defined on the same probability space.  Their 

“joint probability density function” p(x,y) is defined as: 
 
 

– Independence 
• A, B are independent if P(A,B) = P(A) P(B) 
• x,y are independent if p(x,y) = p(x) p(y) 

P 𝑥𝑙 ≤ 𝑥 ≤  𝑥𝑢; 𝑦𝑙 ≤ 𝑦 ≤  𝑦𝑢 ≡ � � 𝑝 𝑥, 𝑦 𝑓𝑥 
𝑥𝑢

𝑥𝑙

𝑓𝑦
𝑦𝑢

𝑦𝑙

 

Conditional Probability:  

– Countable events:    P(A|B)= P A∩B
P B , probability of A given that B occurred 

• E.G. probability that a “2” is rolled on a fair die given that we know 
the roll is even: 

– P(B) = probability of even roll = 3/6=1/2 
– P A ∩ B = 1/6   (since A ∩ B = A) 
– P(2|even roll) = P A ∩ B /P(B) = (1/6)/(1/2) = 1/3 



Conditional Probability (continued):  

– CRV:  𝑝 𝑥 𝑦 = �
𝑝 𝑥,𝑦
𝑝 𝑦

     𝑔𝑓  0 < 𝑝 𝑦 < ∞
0         𝑃𝑡ℎ𝑔𝑃𝑜𝑔𝑡𝑔          

 

– This follows from:  
 

 
– and: 

Conditional Probability & Expectation 

P 𝑥𝑙 ≤ 𝑥 ≤  𝑥𝑢 | 𝑦 ≡ � 𝑝 𝑥|𝑦 𝑓𝑥
𝑥𝑢

𝑥𝑙

=  
∫ 𝑝 𝑥, 𝑦 𝑓𝑥𝑥𝑢

𝑥𝑙

𝑝(𝑦)  

𝑝 𝑥 = � 𝑝 𝑥, 𝑦 𝑓𝑦
∞

−∞
= � 𝑝 𝑥|𝑦 𝑝(𝑦)𝑓𝑦

∞

−∞
 

Expectation: (key for estimation) 
– Let x be a CRV with distrubution p(x). The expected value (or mean) of x 

is  
 

– Conditional mean (conditional expected value) of x given event M: 
 
 

𝐸[𝑥] = � 𝑥𝑝 𝑥 𝑓𝑥
∞

−∞
 

𝐸[𝑥|𝑀] = � 𝑥𝑝 𝑥|𝑀 𝑓𝑥
∞

−∞
 

𝐸[𝑔(𝑥)] = � 𝑔(𝑥)𝑝 𝑥 𝑓𝑥
∞

−∞
 



Mean Square: 
 
Variance:  

Expectation (continued) 

𝜇 𝑥 = 𝐸[𝑥] 

𝐸[𝑥2] = � 𝑥2𝑝 𝑥 𝑓𝑥
∞

−∞
 

𝜎2 =  𝐸[(𝑥 − 𝜇)2] = � (𝑥 − 𝜇)2𝑝 𝑥 𝑓𝑥
∞

−∞
 



A stochastic system whose state is characterized a time evolving CRV, 
x(t), t ε [0,T].   

– At each t, x(t) is a CRV 
– x(t) is the “state” of the random process, which can be characterized by 

 
 
Random Processes can also be characterized by: 

– Joint probability function 
 
 
 

– Correlation Function 
 
 

– A random process x(t) is Stationary if p(x,t+τ)=p(x,t) for all τ 

Random Processes 

P[𝑥𝑙 ≤ 𝑥(𝑡) ≤ 𝑥𝑢] = ∫ 𝑝 𝑥, 𝑡 𝑓𝑥∞
−∞  

𝐸[𝑥 𝑡1 𝑥(𝑡2)] = ∫ 𝑥1 𝑥2 𝑝 𝑥1, 𝑥2, 𝑡1, 𝑡2  𝑓𝑥1𝑓𝑥2
∞

−∞ ≡ 𝜌(𝑡1, 𝑡2) 

P[𝑥1𝑙 ≤ 𝑥(𝑡1) ≤ 𝑥1𝑢; 𝑥2𝑙 ≤ 𝑥(𝑡2) ≤ 𝑥2𝑢] = ∫ ∫ 𝑝 𝑥1, 𝑥2, 𝑡1, 𝑡2  𝑓𝑥1𝑓𝑥2
𝑥2𝑢

𝑥2𝑙

𝑥1𝑢
𝑥1𝑙

 

Joint probability 
density function 

Correlation function 



𝑋�(𝑡) =
𝑋1(𝑡)

⋮
𝑋𝑛(𝑡)

  where each Xi(t) is a random process 

 
R(𝑡1, 𝑡2) = “Correlation Matrix” = 𝐸[𝑋� 𝑡1 𝑋�𝑇 𝑡2 ] 

              =
𝐸[𝑋1 𝑡1 𝑋1 𝑡2 ] ⋯ 𝐸[𝑋1 𝑡1 𝑋𝑛 𝑡2 ]

⋮ ⋱ ⋮
𝐸[𝑋𝑛 𝑡1 𝑋1 𝑡2 ] ⋯ 𝐸[𝑋𝑛 𝑡1 𝑋𝑛 𝑡2 ]

 

 
∑(t) = “Covariance Matrix” = E (𝑋� 𝑡 − �̅� 𝑡 )(𝑋� 𝑡 − �̅� 𝑡 )𝑇  

Vector Valued Random Processes 

Where 𝜇 𝑡 = 𝐸[𝑋� 𝑡 ] 
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