Probability for Estimation (review)

In general, we want to develop an estimator for systems of the form:

x = f(x,u) +n(d); giveny, find X
y = h(x) + w(t);

We will primarily focus on discrete time linear systems

Xp+1 = ApXp + Brug + g
Yk = HpXg + wg;
Where
- A,, By, H, are constant matrices
— X, Is the state at time t; u, is the control at time t,
- 1., are “disturbances” at time t,

Goal: develop procedure to model disturbances for estimation
— Kolmogorov probability, based on axiomatic set theory
— 1930’s onward




Axioms of Set-Based Probability

Probability Space:
— Let Q be a set of experimental outcomes (e.g., roll of dice)
O={A,A,, .., Ay}

 the A, are “elementary events” and subsets of Q are termed “events”
« Empty set {@} is the “impossible event”
o S={O}is the “certain event”

— A probability space (Q, F,P)
» F =set of subsets of Q2, or “events”, P assigns probabilities to events

Probability of an Event—the Key Axioms:
— Assign to each A;a number, P(A;), termed the “probability” of event A,
— P(A;) must satisfy these axioms
1. P(A)=0
2. P(S) =1
3. If events AB € Q2 are “mutually exclusive,” or disjoint, elements or
events (AnNB= {@}), then

P(AUB) = P(4) + P(B)



Axioms of Set-Based Probability

As a result of these three axioms and basic set operations (e.g.,
DeMorgan’s laws, such as A U B=A4 N B)
- P({o}H=0
— P(A)=1-P(4) = P(A) + P(4) = 1, where 4 is complement of A
- IfAq, A,, ..., Ay mutually disjoint

P(A; UA; U UAy) = P(A;) + P(47) + -+ P(Ay)

For Q an infinite, but countable, set we add the “Axiom of infinite
additivity”
3(b). If A4, A,, ... are mutually exclusive,

We assume that all countable sets of events satisfy Axioms 1, 2, 3, 3(b)

But we need to model uncountable sets...



Continuous Random Variables (CRVs)

Let Q = R (an uncountable set of events)

— Problem: it is not possible to assign probabilities to subsets of R which
satisfy the above Axioms

— Solution:

» let “events” be intervals of R: A = {x | x, <x <x,}, and their countable
unions and intersections.

« Assign probabilities to these events

P(x; < x < x,) = Probability that x takes values in [x;, x,, |
* X Is a “continuous random variable (CRV).

Some basic properties of CRVs
— IfxisaCRVin|[L U],thenP(L<x<L)=1
— Ifyin[L,U],thenP(L<y<x)=1-P(y<x<U)



Probability Density Function (pdf)

Xu
P <x < x,) = j p(x)dx
X1

A

E.Q. p(x)

— Uniform Probability pdf: 1 — o

p(x) = -—

=V

— Gaussian (Normal) pdf:

1,505

p(x) =

o221
p(x)

1 ="mean” of pdf “1

o = “standard deviation”

a
X

Most of our Estimation theory will be built on the Gaussian distribution



Joint & Conditional Probability

Joint Probability:
— Countable set of events: P(A n B) = P(A,B), probability A & B both occur

— CRVs: let x,y be two CRVs defined on the same probability space. Their
“joint probability density function” p(x,y) is defined as:

Yu Xu
Plx;<x <x;vi<y < y,) EJ f p(x,y)dx dy
yi JXx

— Independence
« A, B are independent if P(A,B) = P(A) P(B)
* X,y are independent if p(x,y) = p(x) p(y)

Conditional Probability:

P(AnB)
P(B)
e E.G. probability that a “2” is rolled on a fair die given that we know

the roll is even:
— P(B) = probability of even roll = 3/6=1/2
- PANB)=1/6 (sinceANnB=A)
— P(2Jeven roll) = P(A n B)/P(B) = (1/6)/(1/2) = 1/3

— Countable events: P(A|B)= , probability of A given that B occurred



Conditional Probability & Expectation

Conditional Probability (continued):

p(xy) .
— CRV: p(x|y) = { ooy S 0<pl) <o
0 otherwise

— This follows from: .
[ pCe,y)dx

p(y)

Xu
POy <x < xu|y) Ef p(x|y)dx =
X1

— and: 0 0
p(x)=j_ p(x,y)dy=j p(x|y)p(y)dy

Expectation: (key for estimation)

— Let x be a CRV with distrubution p(x). The expected value (or mean) of x
IS

(0]

Bl = [ w@dr  Elg@)] = [ gGopCode

— Conditional mean (conditional expected value) of x given event M:

E[x|M] = f_oo xp(x|M)dx



EXP@CTGTEOH (continued)
Mean Square: E[x?] = jooxzp(x)dx

Variance: 0?2 = E[(x —w)?] = J_ (x — u)?p(x)dx u(x) = E[x]



Random Processes

A stochastic system whose state is characterized a time evolving CRV,
X(1), t € [0,T].

— Ateacht, x(t) isa CRV

— X(t) is the “state” of the random process, which can be characterized by

Plx; < x(t) < xy] = ffooop(x, t)dx

Random Processes can also be characterized by: . . orobability

— Joint probability function density function
A
iy ( N\
u u
Plxy < x(t1) < X145 %21 < x(t2) S xoy] = fxu fol p(x1, X3, ty, t3) dx1dx;
— Correlation Function Correlation function

oo

E[x(t)x(t)] = J X1 X2 P(X1, X2, 84, t2) dxydxy; = p(ty, t3)

— A random process x(t) is Stationary if p(x,t+1)=p(x,t) for all <



Vector Valued Random Processes
X1(t)

Xn(t)

X() = where each X;(t) is a random process

R(t;, t,) = “Correlation Matrix” = E[X(t)XT (t,)]

E[X, (t1?X1 (t2)] E[X, (t1?Xn(t2)]

EXu(t)X:(6)] - E[Xn(t)Xn(t)]

3'(t) = “Covariance Matrix” = E[(X(t) — a(t))(X(¢t) — a(t))’]

Where u(t) = E[X(t)]
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