
Problem 1 Statement: This problem explores the di�erence between a simple �nite horizon
optimal control problem and its in�nite horizon optimal control counterpart. Consider a system
whose dynamics are governed by the equations ẋ = ax + bu, where x ∈ R denotes the state,
u ∈ R is a single scalar control input, and a and b are constant positive scalars: a = 2, and b = 0.5.

Consider the optimal control problem with cost: J = (1/2)
∫ T

t0
u2(t) dt + (1/2)cx2(T ), where

�nal time T is given and c > 0 is a constant. The optimal control for �nite time T > 0
is derived in Example 2.2 in OBC. Now consider the in�nite horizon problem with cost J =
(1/2)

∫∞
t0
u2(t) + cx2(t) dt

Part (a): Solve the algebraic Ricatti equation to �nd P , leading to the optimal controlu∗(t) =
−bPx∗(t) for the in�nite horizon case.

Solution: With this choice of cost function, we de�ne the Hamiltonian for the scalar sys-
tem to be H = (1/2)u2+(1/2)cx2+λ(ax+ bu). Using the algebraic Ricatti equation (ARE) will
give:

p2 − p(2a
b2

)− c

b2
= 0 (1)

The solution to this equation is not unique, however the intent of the LQR is to stabilize the
system so we must choose the value of p that stabilizes the closed-loop system. Consider ẋ(t) =
ax(t) + b ∗ (−bpx(t)) = (a− b2p)x(t). A stable dynamical system is one that we can express as
ẋ(t) = rx(t) for some r < 0. This motivates us to choose:

p =
a

b2
+

1

b

√
a2

b2
+ c (2)

This yields the dynamical system: ẋ(t) = −(
√
a2 + b2c)x(t)

Part (b): For the two initial conditions x(t0) = 0.1 and x(t0) = 10.0, plot the closed loop
system response for the in�nite horizon system over an interval of 10 seconds.
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Part (c): Plot the closed loop system response of the �nite horizon optimal controller for the
case of c = 0.1 and c = 10.0. Plot the response for �nite time horizons T = 1 and T = 10. Also,
plot the gains as a function of time.

The closed loop system responses can be plotted by simulating the example in OBC. The gains
as a function of time can be found via deriving the Ricatti equation for this scalar system, which
gives rise to:

dp

dt
= p2b2 − 2pa

p(T ) = c
(3)

A variable substitution τ = T − t can be made to convert this to a forward time di�erential
equation, yielding:

dp

dτ
= −p2b2 + 2pa

p(τ = 0) = c
(4)

The plots for the case T = 10, x0 = 0.1 are as follows:
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Part (d): Compare the in�nite horizon and �nite horizon optimal control solutions. Which
�nite time solution is the closest to the in�nite time solution? How do the gains di�er?

Problem 2 Statement: Consider the following optimal control problem. You are given a
linear dynamical system

ẋ = Ax+Bu (5)

You wish to design the optimal control u(t) which optimizes the following performance index:

J(x, u) = (1/2)

∫ T

0

[
xT uT

] [ Q V
V T R

] [
x
u

]
dt+ (1/2)xT (T )PTx(T ) (6)

If we de�ne the modi�ed Kalman gain as K = R−1(V T + BTP ) then show that the optimal
control for this problem is given by u(t) = −K(t)x(t) where P is the solution to the following
Ricatti type equation: −Ṗ = PA+ATP −KTRK +Q with terminal condition P (T ) = PT .

Solution: The solution strategy to this derivation is to follow the basic framework of the Pon-
tryagin Maximum Principle (PMP) specialized to this particular cost functional and dynamic
system. Thus, the �rst step is to formulate the Hamiltonian:

H = (1/2)x(t)TQx(t) + (1/2)u(t)TRu(t) + x(t)TV u(t) + λ(t)T (Ax(t) +Bu(t)) (7)

The implied assumption is that A,B,Q,R and V are not time-dependent quantities, although
in general they could be. We can obtain the optimal controller's form by recourse to the PMP
condition that applies to system's without control constraints, i.e. ∂H

∂u = 0. This condition
yields:

Ru(t) + V Tx(t) +BTλ(t) = 0⇒ u∗(t) = −R−1(V Tx(t) +BTλ(t)) (8)

Similar to the derivation for the LQR controller, we postulate that the co-state variable has the
separable form: λ(t) = P (t)x(t). Substituting this form into (6) yields:

u∗(t) = −R−1(V T +BTP (t))x(t) ≡ −K(t)x(t) (9)

Now we must show that the matrix P (t) satis�es the Ricatti-type equation given. We can do
this by invoking the PMP condition governing the co-state evolution, i.e. ∂H

∂x = −λ̇. Evaluating
leads to:
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−λ̇ = Qx(t) + V u(t) +ATλ(t) (10)

Using the assumed form of λ(t) and the derived form of u∗, and the dynamical equation ẋ =
Ax(t) +Bu(t), we arrive at:

Qx(t)− V K(t)x(t) +ATP (t)x(t) = −Ṗ (t)x(t)− P (t)Ax(t) + P (t)BK(t)x(t) (11)

Since this equation must hold for all possible state values, we can rearrange the expression and
group terms to obtain the following equation (explicit time-dependency has been suppressed with
the understanding that matrices P and K are functions of time)

−Ṗ = PA+ATP +Q− (V + PB)K (12)

Now, after some algebraic manipulation and the symmetrical form of P and R, we can show that
(V + PB) = KTR, which allows us to write:

−Ṗ = PA+ATP +Q−KTRK (13)

The terminal condition is found by using the terminal co-state equation from PMP: λ(T ) = ∂V
∂x ,

where V (x(T )) is understood to be the terminal penalty term present. This yields λ(T ) =
P (T )x(T ) = PTx(T ) and again due to the applicability of this equation for arbitrary �nal state,

we can claim that P (T ) = PT , concluding the exercise.
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