Problem 1 Statement: This problem explores the difference between a simple finite horizon
optimal control problem and its infinite horizon optimal control counterpart. Consider a system
whose dynamics are governed by the equations & = ax + bu, where x € R denotes the state,
u € R is asingle scalar control input, and a and b are constant positive scalars: a = 2, and b = 0.5.

Consider the optimal control problem with cost: J = (1/2) tf u?(t) dt + (1/2)ca®(T), where
final time T is given and ¢ > 0 is a constant. The optimal control for finite time 7" > 0

is derived in Example 2.2 in OBC. Now consider the infinite horizon problem with cost J =
(1/2) tzo u?(t) + cx?(t) dt

Part (a): Solve the algebraic Ricatti equation to find P, leading to the optimal controlu*(t) =
—bPz*(t) for the infinite horizon case.

Solution:  With this choice of cost function, we define the Hamiltonian for the scalar sys-
tem to be H = (1/2)u? + (1/2)cz? + A(az + bu). Using the algebraic Ricatti equation (ARE) will
give:
2a c

P2—P(b7)—b3:0 (1)
The solution to this equation is not unique, however the intent of the LQR is to stabilize the
system so we must choose the value of p that stabilizes the closed-loop system. Consider &(t) =
ax(t) +bx (—bpz(t)) = (a — b?>p)x(t). A stable dynamical system is one that we can express as
%(t) = ra(t) for some r < 0. This motivates us to choose:

a 1 [a?
p:b7+g b72+c (2)

This yields the dynamical system: @(t) = —(va? + b%c)z(t)

Part (b): For the two initial conditions x(t9) = 0.1 and z(¢9) = 10.0, plot the closed loop
system response for the infinite horizon system over an interval of 10 seconds.
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Part (c): Plot the closed loop system response of the finite horizon optimal controller for the
case of ¢ = 0.1 and ¢ = 10.0. Plot the response for finite time horizons T'= 1 and T' = 10. Also,
plot the gains as a function of time.

The closed loop system responses can be plotted by simulating the example in OBC. The gains
as a function of time can be found via deriving the Ricatti equation for this scalar system, which
gives rise to:

dp 2

= = p%b® — 2pa

dt D 4
p(T)=c

A variable substitution 7 = T — ¢ can be made to convert this to a forward time differential

equation, yielding:

3)

d,
@ _ —p?b% + 2pa
dr

(4)
p(r=0)=c
The plots for the case T'= 10, zg = 0.1 are as follows:
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Part (d): Compare the infinite horizon and finite horizon optimal control solutions. Which
finite time solution is the closest to the infinite time solution? How do the gains differ?

Problem 2 Statement: Consider the following optimal control problem. You are given a
linear dynamical system

& = Az + Bu (5)

You wish to design the optimal control u(t) which optimizes the following performance index:

se=a [ B[ W] arameroeae @

If we define the modified Kalman gain as K = R~ (VT + BT P) then show that the optimal
control for this problem is given by u(t) = —K(t)z(t) where P is the solution to the following
Ricatti type equation: —P = PA + ATP — KTRK + Q with terminal condition P(T) = Pr.

Solution: The solution strategy to this derivation is to follow the basic framework of the Pon-
tryagin Maximum Principle (PMP) specialized to this particular cost functional and dynamic
system. Thus, the first step is to formulate the Hamiltonian:

H = (1/2)z(t)" Qx(t) + (1/2)u(t)T Ru(t) + z(t)"Vu(t) + X(t)T (Az(t) + Bu(t)) (7)

The implied assumption is that A, B,Q, R and V are not time-dependent quantities, although
in general they could be. We can obtain the optimal controller’s form by recourse to the PMP
condition that applies to system’s without control constraints, i.e. %—Ij = 0. This condition
yields:

Ru(t) + VTz(t) + BTX(t) = 0= u*(t) = —R~Y(VTz(t) + BTX(t)) (8)

Similar to the derivation for the LQR controller, we postulate that the co-state variable has the
separable form: A(t) = P(t)z(t). Substituting this form into (6) yields:

u*(t) = =R~V + BTP(t)x(t) = —K(t)x(t) (9)
Now we must show that the matrix P(t) satisfies the Ricatti-type equation given. We can do
this by invoking the PMP condition governing the co-state evolution, i.e. %—g = —\. Evaluating
leads to:



A\ = Qu(t) + Vu(t) + ATX(t) (10)

Using the assumed form of A(¢) and the derived form of u*, and the dynamical equation & =
Az(t) + Bu(t), we arrive at:

Qx(t) — VK (t)x(t) + ATP(t)z(t) = —P(t)x(t) — P(t)Ax(t) + P(t)BK (t)x(t) (11)

Since this equation must hold for all possible state values, we can rearrange the expression and
group terms to obtain the following equation (explicit time-dependency has been suppressed with
the understanding that matrices P and K are functions of time)

~P=PA+ATP+Q— (V+PB)K (12)

Now, after some algebraic manipulation and the symmetrical form of P and R, we can show that
(V + PB) = KT R, which allows us to write:

|—P=PA+A"P+ Q- K"RK| (13)

The terminal condition is found by using the terminal co-state equation from PMP: \(T') = 4Z,

where V(z(T)) is understood to be the terminal penalty term present. This yields \(T) =
P(T)x(T) = Ppz(T) and again due to the applicability of this equation for arbitrary final state,

we can claim that | P(T) = Pr |, concluding the exercise.



