
CDS 112 Winter 2014/2015
Solution to Homework 3

Problem 1(a) Statement: Use the maximum principle to show that the shortest path between
two points in the plane is a straight line. To do this, model a control system

ẋ = u

where x ∈ R2 is the position of points in the plane and u ∈ R2 is the velocity of a point along
a curve. Find the path of minimal length connecting x(0) = x0 and x(1) = xf . To minimize the
length of the curve, let the cost along the path be

J =

∫ 1

0

||ẋ|| dt =

∫ 1

0

√
ẋT ẋ dt

subject to the initial and final position constraints.

Solution. Since the dynamics can be written in the form ẋ1 = f1 = u1 and ẋ2 = f2 = u2,
the Hamiltonian can be expressed as:

H(x, u) = L(x, u) + λT f = ||ẋ||+ λ1f1 + λ2f2

=
√
u21 + u22 + λ1u1 + λ2u2.

Now apply the Pontryagin conditions. The adjoint state equations are:

−λ̇1 =
∂H

∂x1
= 0 − λ̇2 =

∂H

∂x2
= 0

from which we can conclude that both λ1 and λ2 are constants. Since the controls are not
constrained, we can apply the simple principle that:

∂H

∂u1
=

u1√
u21 + u22

+ λ1 = 0
∂H

∂u2
=

u1√
u21 + u22

+ λ2 = 0.

These results imply that:
λ∗1
λ∗2

=
u∗1
u∗2

=
ẋ1
ẋ2

=
dx1
dx2

= constant.

This last result implies that the slope of the trajectory connecting the two points is a constant,
which implies that the trajectory connecting the start and final points is a straight line.

Problem 1(b) Statement: Use the Calculus of Variations to find the trajectory y(x) which
minimizes the cost J =

∫ 1

0

√
1 + ẏ2 dx subject to the conditions that y(x = 0) = 0 and

y(x = 1) = 1.

Solution: (M. Burkhardt Feb. 2015) We will solve this problem in some generality to
illustrate the procedure for a broad set of variational problems. It should be noted that Jost’s
Calculus of Variations is an excellent source on these methods. Essentially, we are trying to
minimize a functional:
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J(u(x)) =

∫ b

a

F (x, u(x), u′(x)) dx (1)

Subject to the boundary constraints u(a) = u1 and u(b) = u2. The idea is to introduce an
arbitrary perturbation on the input function u(x) → u(x) + εη(x) and then minimize the func-
tional with respect to the arbitrary perturbation ε. Upon making some reasonable smoothness
assumptions, we can express this as:

d

dx
J(u(x) + εη(x))|η=0 =

∫ b

a

(∂F
∂u
· η(x) + ∂F

∂u′
· η′(x)

)
dx (2)

At this point, you can use integration by parts, the boundary conditions, and the fundamental
lemma of the calculus of variations (see Jost text) to conclude the Euler-Lagrange equations:
For a function u(x) that minimizes the above functional subject to the stated boundary condi-
tions, then the function u(x) must also satisfy the following system of second-order differential
equations:

d

dx

(∂F
∂u′

)
− ∂F

∂u
= 0 (3)

Specialized to our particular problem, we have F (y′) =
√
1 + (y′)2. Thus, we can invoke the

Euler-Lagrange equations to claim that any solution that minimizes the functional must also
satisfy:

d

dx

(∂F
∂y′

)
= 0 (4)

d

dx

( y′√
1 + (y′)2

)
= 0

⇒ u′′√
1 + (u′)2

− (u′)2u′′

(
√
1 + (u′)2)3

= 0

(5)

Clearing the denominator yields:

u′′

(
√

1 + (u′)2)3
= 0⇒ u′′(x) = 0 (6)

This equation must hold for all solutions that minimize the functional we care about, and the
expression must also hold for x ∈ [a, b]. Which kinds of functions have this property? The
solution has to be a straight line between the endpoints.

Problem 3 Statement: In this problem you will use the Hamilton-Jacobi-Bellman equation
to design a controller for the nonlinear system:

ẍ = −x3 + u (7)

Here, x ∈ R is the system state and u is the control. This is a simplified model of a me-
chanical oscillator with a hardening spring. Design the control to minimize the cost function
J = 1

2

∫∞
0

(x2 + u2). dt.

Solution: (M. Burkhardt Feb. 2015)
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The general Hamilton Jacobi Bellman (HJB) equation can be written:

−Vt(t, x) = inf
u
{L(t, x, u(t)) + 〈Vx(t, x), f(t, x, u)〉} (8)

Where ẍ = f(x, u, t) and 〈〉 denotes the natural inner product. In our particular case, the
∞-horizon mandates that the optimal cost to go V (x, t) not be an explicit function of t, i.e.
V = V (x)⇒ ∂V

∂t = 0. Thus,

0 = inf
u
{1
2
(x2 + u2) +

∂V

∂x

T

(−x3 + u)} (9)

Evaluating the minimum yields u∗ = −∂V∂x and

0 =
1

2
x2 − 1

2

(∂V
∂x

)2
− ∂V

∂x
x3 (10)

The instinct to solve this challenging nonlinear ODE is misleading– we already know that u∗ =
−∂V∂x , and the above expression is an algebraic expression in ∂V

∂x , so all we must do is simply
solve for ∂V

∂x . Similar to the standard LQR derivation for the scalar system, we must take care to
select the positive choice of ∂V∂x because then the closed-loop system will be stable (this is quite
analagous to choosing the scalar p value that yields the stable closed-loop system in the scalar
LQR examples). So, rerranging the above equation:(∂V

∂x

)2
+ (2x3)

(∂V
∂x

)
− x2 = 0

⇒
(∂V
∂x

)
= −x3 + x

√
x4 + 1

(11)

This gives rise to the optimal controller u∗ = x(t)3 − x(t)
√
x(t)4 + 1 , where the time-dependency

has been included to stress that this procedure yields time-varying state feedback. It is clear
that the closed loop system ẍ(t) = −x(t)

√
x(t)4 + 1 is in fact stable.
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