CDS 112 Winter 2014/2015
Solution to Homework 3

Problem 1(a) Statement: Use the maximum principle to show that the shortest path between
two points in the plane is a straight line. To do this, model a control system

T = u

where x € R? is the position of points in the plane and © € R? is the velocity of a point along
a curve. Find the path of minimal length connecting z(0) =z and (1) = ;. To minimize the
length of the curve, let the cost along the path be
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subject to the initial and final position constraints.

Solution. Since the dynamics can be written in the form #; = f; = w1 and @5 = fo = us,
the Hamiltonian can be expressed as:

H(z,u) = L(z,u) + X'f = [|#]|+ Mfi + Xofe

= Jud + ud + Mui+ Agus.

Now apply the Pontryagin conditions. The adjoint state equations are:
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from which we can conclude that both A\; and Ay are constants. Since the controls are not
constrained, we can apply the simple principle that:
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These results imply that:
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This last result implies that the slope of the trajectory connecting the two points is a constant,
which implies that the trajectory connecting the start and final points is a straight line.

Problem 1(b) Statement: Use the Calculus of Variations to find the trajectory y(z) which

minimizes the cost J = fol V14 ¢? dz subject to the conditions that y(z = 0) = 0 and
ylz=1)=1.

Solution: (M. Burkhardt Feb. 2015) We will solve this problem in some generality to
illustrate the procedure for a broad set of variational problems. It should be noted that Jost’s
Calculus of Variations is an excellent source on these methods. FEssentially, we are trying to
minimize a functional:



b
J(u()) = / Fle,u(z), o/ (z)) d (1)

Subject to the boundary constraints u(a) = uy and u(b) = uz. The idea is to introduce an
arbitrary perturbation on the input function u(x) — u(z) + en(x) and then minimize the func-
tional with respect to the arbitrary perturbation e. Upon making some reasonable smoothness
assumptions, we can express this as:
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At this point, you can use integration by parts, the boundary conditions, and the fundamental
lemma of the calculus of variations (see Jost text) to conclude the Fuler-Lagrange equations:
For a function u(z) that minimizes the above functional subject to the stated boundary condi-

tions, then the function w(z) must also satisfy the following system of second-order differential
equations:
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Specialized to our particular problem, we have F(y') = /14 (y’)2. Thus, we can invoke the
Euler-Lagrange equations to claim that any solution that minimizes the functional must also

satisfy:
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Clearing the denominator yields:
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This equation must hold for all solutions that minimize the functional we care about, and the
expression must also hold for x € [a,b]. Which kinds of functions have this property? The
solution has to be a straight line between the endpoints.

=0=u"(z)=0 (6)

Problem 3 Statement: In this problem you will use the Hamilton-Jacobi-Bellman equation
to design a controller for the nonlinear system:
=-—-z"4u (7)

Here, x € R is the system state and w is the control. This is a simplified model of a me-

chanical oscillator with a hardening spring. Design the control to minimize the cost function
J =13 [ (@ 4+ u?). dt.

Solution: (M. Burkhardt Feb. 2015)



The general Hamilton Jacobi Bellman (HJB) equation can be written:

—Vi(t, x) = f{L(t, 2, u(t)) + (Vo (t, 2), f (8, 2, 0))} (®)

Where & = f(z,u,t) and () denotes the natural inner product. In our particular case, the
oo-horizon mandates that the optimal cost to go V(z,¢) not be an explicit function of ¢, i.e.
V =V(z) = % =0. Thus,
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Evaluating the minimum yields v* = %V and
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The instinct to solve this challenging nonlinear ODE is misleading— we already know that u* =
f%—‘;, and the above expression is an algebraic expression in %—‘;, so all we must do is simply
solve for %V Similar to the standard LQR derivation for the scalar system, we must take care to
select the positive choice of BV because then the closed-loop system will be stable (this is quite
analagous to choosing the scalar p value that yields the stable closed-loop system in the scalar
LQR examples). So, rerranging the above equation:
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This gives rise to the optimal controller | u* = x(t)®> — z(t)\/z(t)* + 1 |, where the time-dependency

has been included to stress that this procedure yields time-varying state feedback. It is clear
that the closed loop system #(t) = —z(t)\/x(t)* + 1 is in fact stable.



