
Problem #1: Problem 4.1 on Page 4-18 of the Optimization Based Control notes.

In this problem you were asked to consider a random variable, Z, that is the sum of two in-
dependent Gaussian distributed variables, x1 and x2:

x1 ∼ N (m1, σ
2
1) x2 ∼ N (m2, σ

2
2) .

You were then asked to show that X is a Gaussian random variable with mean z̄ = m1 + m2

and variance σ2
z = σ2

1 + σ2
2 . Note that:

z̄ = E[z] = E[x1 + x2] = E[x1] + E[x2] = m1 +m2

σ2
z = E[(z − z̄)(z − z̄)T ] = E[(x1 + x2 −m1 −m2)(x1 + x2 −m1 −m2)T ]

= E[(x1 −m1)(x1 −m1)T + (x2 −m2)(x2 −m2)T + (x1 −m1)(x2 −m2)T

+(x2 −m2)(x1 −m1)T ]

= σ2
1 + σ2

2

Hence,

p(z) =
1√

2π(σ2
1 + σ2

2)
e
− 1

2
[z−(m1+m2)]2

σ21+σ22 (1)

You were also asked to show that, equivalently, p(z) could be represented by the formula:

p(z) =
1

2πσ1σ2

∫ ∞
−∞

exp

{
− (z − x−m1)2

2σ2
1

− (x−m2)2

2σ2
2

}
dx . (2)

Thus, you need to show that Equations (1) and (2) are equivalent. There are several di�erent
procedures to show the equivalence between the two. Here we will use an approach that follows
very closely from pages 4-4 and 4-5 of the Optimization Based Control class notes.

As before, let Z = X1 +X2, with X1 and X2 being independent Gaussian random variables.
Let's compute the joint probability of the events A and B, where:

A = {x1l ≤ x1 ≤ x1u}, B = {zl ≤ z ≤ zu} .

The joint probability of both events A and B occurring is:

P (A ∩B) = P (x1l ≤ x1 ≤ x1u, zl ≤ x1 + x2 ≤ zu)}
= P (x1l ≤ x1 ≤ x1u, (zl − x1) ≤ x2 ≤ (zu − x1))}

Now use the Gaussian probability density functions forX1 andX2 to derive an explicit expression
for this probability.

P (A ∩B) =

∫ x1u

x1l

(∫ zu−x1

zl−x1

pX2
(x2)dx2

)
pX1

(x1)dx1

=

∫ x1u

x1l

(∫ zu

zl

pX2(z − x1)dz

)
pX1(x1)dx1

,
∫ zu

zl

∫ x1u

xll

pZ,X1
(z, x1)dx1dz

where we have used a change of variables in the second line of the derivation, and we have used
the fact that the joint probability of events A and B is equivalent to the double integral over
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the joint probability density function of the random variables Z and X1. Hence, we have shown
that pZ,X1

= pX2
(z − x1)pX1

(x1). Recalling that:

pZ(z) =

∫
pZ,X1

(z, x1)dx1

we can see that

pZ(z) =

∫ ∞
−∞

pZ,X1
dx1 =

∫ ∞
∞

pX2
(z − x1)PX1

(x1)dx1.

Now subsitute in the explicit Gaussian formulae for the probability densities into the integral
expression:

pZ(z) =

∫ ∞
−∞

1√
2πσ2

2

e
− (z−x1−m2)2

2σ22
1√

2πσ2
1

e
− (x1−m1)2

2σ21 dx1

=
1

2πσ1σ2

∫ ∞
−∞

exp

{
− (z − x1 −m2)2

2σ2
2

− (x1 −m1)2

2σ2
1

}
dx1

Note that this result is slightly di�erent than then one in Equation (2). If we had taken a di�er-
ent ordering of the integrating variables, we would arrive at that exact expression.

Problem 2 Statement: Consider the motion of a particle that is undergoing a random walk
n one dimension. We model the position of the particle as x[k + 1] = x[k] + u[k], where x is
the position of the particle and u is a white noise process with E{u[i]} = 0 and E{u[i]u[j]} =
Ruδ(i − j). We assume that we can measure x subject to additive, zero-mean, Gaussian white
noise with covariance 1. Show that the expected value of the particle as a function of k is given
by:

E{x[k]} = E{x[0]}+

k−1∑
i=0

E{u[i]} = E{x[0]} , µx (3)

Also show that the covariance E{(x[k]− µx)2} =
∑k−1
i=0 E{u2[i]} = kRu

Solution: By iterating the recursive dynamical relationship it is easy to show that x[k] can be
expressed as:

x[k] = x[0] +

k−1∑
i=0

u[i] (4)

As expectation is a linear operator, E{x[k]} = E{x[0]} +
∑k−1
i=0 E{u[i]}. However, we are given

that E{u[i]} = 0∀i ⇒ E{x[k]} = E{x[0]} , µx . Given the recursive dynamical equation, we

may also directly evaluate the covariance:

E{(x[k]− µx)2} = E{(
k−1∑
i=0

u[i])2} = E{
k−1∑
i=0

u[i]2 +

k−1∑
i=0

k−1∑
j 6=i

u[i]u[j]} (5)

Again using the fact that E{·} is a linear operator, we �nd that:

E{(x[k]− µx)2} =

k−1∑
i=0

E{u[i]2}+

k−1∑
i=0

k−1∑
j 6=i

E{u[i]u[j]} (6)
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In the above, we are asumming that x[0] = E{x[0]}, or equivalently that the covariance on the
initial state estimate is zero. However, since the perturbation u[i] is a white-noise process, its'
value at two successive times are uncorrelated, thus E{u[i]u[j]} = 0∀i 6= j, and the double sum
evaluates to zero. Then, given E{u[i]u[j]} = δ(i− j)Ru we �nd that:

E{(x[k]− µx)2} = kRu (7)

Problem 3 Statement: Let X and Y be two jointly distributed random variable with X
scalar and let Y take the value y. Let x̂ be an estimate chosen so that:

E(|X − x̂| : Y = y) ≤ E(|X − z| : Y = y) (8)

In other words, x̂ is chosen to minimize the average value of the absolute error between x̂
and the actual value taken by X. Show that x̂ is the median of the conditional density
px|y(x|y). Note: The median of a continuous density pA(a) is that value of a, call it α, for
which P (A ≤ α) = P (A ≥ α).

Solution: Via the condition E{|X− x̂| : Y = y) ≤ E{|X− z| : Y = y}∀z, it is clear that we are
searching for a function that, given some value of Y = y will return an estimate that minimizes
the expected value of the absolute error. This can be written in another way as:

x̂(y) = argmin
q

E{|X − q| : Y = y} (9)

We can write the expected value explicitly as:

x̂(y) = argmin
q

(∫ q

−∞
(q − x)p(x|y) dx+

∫ ∞
q

(x− q)p(x|y) dx
)

(10)

Two integrals are required above to handle the two cases that q > X = x and q < X = x,
respectively. The advantage of framing the problem in this way is that now we have a standard
minimization problem on the variable q. We can take the derivative of this function with respect
to the variable q. To do this, we need to know how to take derivatives with respect to an integral
when the limits of integration depend on the variable we are varying. Leibniz' Rule tells us that:

d

dx

(∫ β(x)

α(x)

f(x, t) dt
)

=

∫ β(x)

α(x)

df(x, t)

dx
dt+

dβ(x)

dx
f(x, β(x))− dα(x)

dx
f(x, α(x)) (11)

Applying Leibniz' Rule to our problem (and noting that the integrand of both integrals evaluated
at q is equal to zero):

d

dq

(∫ q

−∞
(q − x)p(x|y) dx+

∫ ∞
q

(x− q)p(x|y) dx
)

= 0

⇒
∫ q

−∞
p(x|y) dx−

∫ ∞
q

p(x|y) dx = 0

⇒
∫ q

−∞
p(x|y) dx =

∫ ∞
q

p(x|y) dx = 0

(12)

This is telling us that our solution, the minimizer q∗ must satisfy:
∫ q∗
−∞ p(x|y) dx =

∫∞
q∗
p(x|y) dx.

Note that this is claiming that the estimate q∗ is such that the cumulative distribution of the
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conditional probability up to the estimate is equal to that after the estimate, i.e. the estimate
q∗ equally splits the distribution, which de�nes q∗ as the median.
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