
CDS 112: Winter 2014/2015
Solution #5

Problem #1: This problem seeks to build intuition about how estimators work by learning
about and applying the Least Squares Estimation technique

We assume that y ∈ R is related linearly to variable x ∈ Rn via the relationship:

y = θTx =
n∑
i=1

θixi

Given N noisy measurements of the form (xi, yi), the goal is to θ. Because the measurements
aren’t perfect, there may not exist a θ that will satisfy

yi = θTxi i = 1, 2, . . . N

We wish to “guess” (estimate) the θ̂ that might be close to θ by minimizing the cost

J(θ) =
1

2

N∑
i=1

(yi − θTxi) .

In words, this cost is the sum of squared errors.

1. Letting

A ,


— xT1 —
— xT2 —

...
— xTN—

 Y =


y1
y2
...
yN


we can rewrite J(θ) from above as

J(θ) = ‖Y − Aθ‖22 .

show that
θ∗ = arg min

θ
J(θ) = (ATA)−1ATY

Hint: Use the fact that ‖x‖22 = xTx .

Solution:

Notice that
J = θTATAθ − 2Y TAθ + Y TY
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Differentiate with respect to θ and set equal to zero:

∇θJ = 2ATA− 2ATY = 0 ⇒ θ∗ = (ATA)−1ATY

Check that this is a minimum by obtaining the second derivative of J, and making sure
it is positive

∇2
θJ = ATA > 0

2. Suppose the measurements arrive sequentially. Let θ̂N be the least-squares solution
obtained front the first N measurements. We obtain a new measurement, and we
want to use this information to compute θ̂N+1 without recomputing the solution from
scratch. We can do this via the ‘Recursive Least Squares Filter’. Let

PN = ATNAN where AN =


— xT1 —
— xT2 —

...
— xTN—


Show that the recursion

θ̂N = θ̂N−1 + P−1N xN(yN − xTN θ̂N−1)

with
P−1N = P−1N−1 − P

−1
N−1xN(1 + xTNP

−1
N−1xN)−1xTNP

−1
N−1

produces the least squares solution using available measurements. That is, show that
the formula from part 1 and this recursion agree for any N.

Solution:

The recursion for PN is proved by applying the matrix inversion lemma with A = PN−1,
B = xN , C = 1, D = xTN .

The recursion for θ̂N is obtained by using the fact that

Pmθ̂m = ATmYm

for any m.

Expanding at step N , we get

PN θ̂N = ATNYN

= ATN−1YN−1 + xNyN

= PN−1θ̂N−1 + xNyN

= (PN − xNxTN) ˆθN−1 + xNyN

= PN θ̂N−1 + xN(yN − xTN θ̂N−1

so that
θ̂N = θ̂N−1 + P−1N xN(yN − xTN θ̂N−1)
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3. In 3050 A.D. NASA sends a spacecraft light-years away, towards a habitable planet.
The spacecraft enters the planet’s atmosphere, and the astronauts on board realize
that they have no idea what the atmospheric drag coefficient (catm) or the acceleration
due to gravity (g) of this new planet is. This would help them plan a safe and smooth
descent trajectory to the surface. The spacecraft is known to fall according to

msz̈ − catm|ż| = −msg

where z(t) is the spacecraft’s altitude.

(i) In the first scenario, the people on board never solved part 2 above, and so
they crash-land (don’t worry, everyone survives). They collected measurements
of z̈ and |ż| throughout the fall, and their data is available as data.m (the first
column is z̈ and the second column is |ż|.) Obtain least-squares estimates for g
and catm/ms using the result from part 1.
Hint: Pick one of the measured values to be y, and the other to be part of x (you
need to add something to the end of each x to account for a constant offset).

Solution:

1 %Pseudo−Code by KRISHNA SHANKAR
2 load data
3

4 X = [data(:,2), ones(length(data(:,1)),1)];
5 Y = data(:,1);
6

7 %One Step Least Squares Solution
8 v = (X'*X)ˆ−1*X'*Y;
9

10 %Recursive Least Squares Solution
11 theta = zeros(2,1);
12 R = eye(2)*10ˆ6;
13 for i = 1:length(X(:,1))
14 x = [X(i,1);1];
15 R = R−R*x*(1+x'*R*x)ˆ(−1)*x'*R;
16 Rst(i) = R(1,1);
17 theta = theta+R*x*(Y(i)−x'*theta);
18 Theta(:,i) = theta;
19 end
20

21 plot(Theta(2,:));
22 xlabel 'N'
23 ylabel 'Estimate of g'

We find that catm ≈ 5.15 and g ≈ −20.24.

4. In the second scenario, the people on board solved part 2, and they decide to use the
RLS filter – Implement the recursion from part 2 (set P0 = In×n × 106 and θ̂0 = ~0).
Plot your estimates of g and catm/ms as a function of N , where N ranges from 1 to
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number of measurements. Do your estimates converge to the answers from the previous
question?

Solution: Below is the plot of the gravity estimate versus iteration
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Figure 1: Estimates as a function of step N

Problem #1: Kidnapped Robot Problem

In this problem, you were asked to consider a simplified 1-dimensional model of a robot which
has to estimate it’s location using low-rate GPS measurements and higher rate accelerometer.

Part (a): You were asked to discretize the dynamic model:

m
d2x

dt2
+ b

dx

dt
= u

where m is the vehicle mass (100 kg), and b is the drag constant, specfied as b/m = −0.01s−1.
Let’s first divide the equation through by the mass, m:

ẍ+
b

m
ẋ =

u

m
(1)
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There are many different types of discretized models that will provide good performance in
this application. In general, we must find a first-order model that includes acceleration, ẍ,
as one of the states–since we must have a measurement equation that includes acceleration
as a measurement.

A common approach is to somewhat ignore the vehicle dynamics and use a simple model
based on integration of vehicle acceleration over a “short” period δT :xk+1

ẋk+1

ẍk+1

 =

1 δT (δT )2

2

0 1 δT
0 0 1

xkẋk
ẍk

 (2)

where xk is the vehicle position at tk, ẋk is the vehicle velocity at tk, and ẍk is the vehicle
acceleration at time tk. This model makes the short-cut of assuming that vehicle acceleration
is constant.

A slightly more accurate first-order continuous model can be derived by using Equation (1)
and its derivative:

d3x

dt3
= − b

m
ẍ+

u̇

m
(3)

which leads to the following first-order continuous model

d

dt

xẋ
ẍ

 =

0 1 0
0 −b/m 0
0 0 −b/m

xẋ
ẍ

+

 0 0
(1/m) 0

0 (1/m)

[u
u̇

]
(4)

If Equation (4) has the form ż = Acz + Bcuc, with z =
[
x ẋ ẍ

]T
, then recall that for a

constant input over the interval [tk, tk+1], the discretized equation can be found from the
convolution integral:

zk+1 = eA
cδT zk +

∫ tk+1

tk

eA
cδTBcucdt , Azk +Buk .

As we shall see below, the matrix B is irrelevant for this problem, and so we need only
compute the matrix A:

A = eA
cδT .

Since the accelerometer samples at 20 Hz (δT = 0.05 seconds), and the GPS sampling interval
(δT = 0.5 seconds) is an integer multiple, we can choose δT = 0.05 for the discretization.
Using the given problem data of (b/m) = 0.01, we have that (using the expm function in
MATLAB):

A = exp

{
0.5 ∗

0 1 0
0 −0.01 0
0 0 −0.01

} =

1 0.05 0
0 0.9995 0
0 0 0.9995


Note that this exact discretization is surprisingly close to the crude model of Equation (2).
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Part(b): Since there are no disturbances, except for the initial uncertainty of the vehicle’s
position, the Kalman filter dynamic update is quite simple:

x̂k+1|k = Ax̂k +Buk (5)

Pk+1|k = APk|kA
T . (6)

The covariance part of the measurement update takes the form:

Pk+1|k+1 = Pk+1|k − Pk+1|kH
T (HPk+1|kH

T +R)−1HPk+1|k . (7)

where H is the measurement matrix and R is the variance of the measurement noise. During
most measurement cycles, only the acceleromater measurement is available, and in that case,
the measurement matrix and noise are:

Haccel =
[
0 0 1

]
Raccel = (0.0981msec−2)2

When both the GPS and accelerometers signal are available, then

Haccel,GPS =

[
0 0 1
1 0 0

]
Raccel =

[
(0.0981msec−2)2 0

0 (5.0m)2

]

The calculation is initialized with P0, the initial uncertainty of the system state. If we assume
that the initial uncertainties in position, velocity, and acceleration are mutually uncorrelated,
then P0 takes the form:

P0 =

P 0
xx 0 0
0 P 0

vv 0
0 0 P 0

aa


where P 0

xx is the initial variance in position (which is assumed to 100 m2), P 0
vv is the initial

variance in vehicle velocity (which was not specified), and P 0
aa is the initial uncertainty in

acceleration (which we can assume is (0.0981 m sec−1)2, the variance in the accelerometer
noise). If you assume that the vehicle is at rest in its initial configuration, with no uncertainty,
then P 0

vv = 0. A plot of position variance vs. k is shown in Figure 2(a). If the initial
uncertainty in velocity is non-zero (Pvv = 1.0 in this example), then one obtains the position
variance vs. k curve seen in Figure 2(b).
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Figure 2: Plot of vehicle Position variance vs. k. (a) case where P 0
vv = 0; (b) case where

P 0
vv = 1;
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