
CDS 112: Winter 2014/2015
Solution #6

Problem #1: In this problem, you were to revisit the “Kidnapped Robot” problem from
the previous week’s homework. Fixed lag smoothing can improve the estimate of vehicle
position at the cost of delay in making that information available. For the same system
(using GPS and accelerometer information) described in Homework set #5, find the fixed
lag smoothing equations for a smoother which delays the position estimate by four seconds.
What is the covariance improvement of the fixed lag smoother over that of the Kalman filter?

Note: The original delay of two GPS measurement cycles of 4 seconds is inconsistent with
the last assignment; two GPS cycles corresponds to a delay of one second.

The covariance update of the smoothed state is given by the following equation:
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Here, the gain matrix La
k is given by: La
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kΣa

k|k−1(H
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k )T (Ha
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of the required quantities in this expression were previously derived in the kidnapped robot
problem. Keep in mind that the measurement matrix Hk changes when a GPS or IMU
measurement is available. Likewise, the measurement covariance matrix Rk also changes with
the timestep. Next, the covariance is initialized to Σ0|1 = P00 and the covariance is updated
and propogated using the equations listed in the Fixed Lag Smoothing notes. Implementing
this procedure into MATLAB yields the following plot comparing the covariance of the fixed
lag smoother versus the regular Kalman filter.
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Problem #2:

Part (a): LQG In this problem you were asked to design a steady-state LQG controller,
assuming that the cost is:

J = E

{∫ ∞
0

[xTQx+ uTRu]dt

}
where the state1 x consists of:

x =

[
(θ − θf )

θ̇

]
1Note that the state can be written simply as x = [θ θ̇]T if the θ-coordinates are adjusted so that θf = 0.

2



where the weighting matrices Q and R take the form:

Q =

[
10 0
0 1

]
R = 1

and where a small disturbance due to a gravity gradient acts on the system in the following
way

Iθ̈ = u+ η(t) (2)

where η(t) can be modeled by zero mean white Gaussian noise with covariance 0.001. Assume
that only satellite orientation measurements are available for the estimator:

y(t) = θ(t) + ω(t) (3)

and assume the measurement noise ω(t) is zero mean white Gaussiam with 0.5 degrees2

variance.

Solution:

The dynamics can be converted to first-order form:

ẋ =

[
0 1
0 0

]
x+

[
0

(1/I)

]
u , Ax+Bu (4)

where x =
[
θ θ̇

]T
,
[
x1 x2

]T
.

LQR controller: Because the system in Equation (4) is linear, and the cost is quadratic, the
Steady-State control law is given by the standard LQR steady-state feedback law applied
to the state estimate

u(t) = −R−1BTPx̂(t) = −1−1
[
0 (1/I)

] [p11 p12
p12 p22

]
x̂(t) = −1

I

[
p12 p12

]
x̂ (5)

where P is the solution to the algebraic Riccati Equation:

0 = PA+ ATP − PBR−1BTP +Q (6)

and the state estimate, x̂, is the solution to the Kalman-Bucy filter:

˙̂x = Ax̂+Bu+ L(y −Hx̂)

with H =
[
1 0

]
(based on the measurement equation (3)), and the filter gain L to be

analyzed below.

If you choose a particular value for the satellite inertia, I, then one could use the MATLAB
lqr() function to design the feedback controller. Here we will carry out the synthesis directly,
and as a function of I. First, let’s substitute the relevant quantities into Equation (6):

0 =

[
p11 p12
p12 p22

] [
0 1
0 0

]
+

[
0 0
1 0

] [
p11 p12
p12 p22

]
−
[
p11 p12
p12 p22

] [
0

(1/I)

]
1−1

[
0 (1/I)

] [p11 p12
p12 p22

]
+

[
10 0
0 1

]
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which reduces to the following algebraic equations for the components of P :

0 = 10− (1/I)2p12 (7)

0 = p11 − (1/I)2p12p22 (8)

0 = 2p12 + 1− (1/I)2p222 (9)

From which we can derive:

p12 =
√

10I p22 = I

√
2I
√

10 + 1 .

Hence, from (5) we see that the feedback control takes the form:

u = −Kx̂ = −
[√

10
√

2I
√

10 + 1
] [x̂1
x̂2

]
.

If, for example, we choose I = 1, then the gain matrix is (up to 4 decimal places):

K =
[
3.1623 2.7065

]
Note that use of the MATLAB lqr() function results in exactly the same results

Kalman-Bucy Filter: Now let’s consider the estimator. Again, since we are considering
the steady-state case, we can look at the algebraic Riccati equation for the Kalman-Bucy
filter. The gain is L = P eHTR−1y , where Ry is the covariance of the measurement noise,
ω(t), and P e is the solution of the algebraic Riccati equation:

0 = AP e + P eAT +GQxG
T − P eHTR−1y HP e (10)

where the matrix G =
[
0 (1/I)

]T
, results from the 1st-order formulation of the dynamics

in (2):

ẋ =

[
0 1
0 0

]
x+

[
0

(1/I)

]
u+

[
0

(1/I)

]
η(t) , Ax+Bu+Gη(t) (11)

Substituting into (10) yields:

0 =

[
p11 p12
p12 p22

] [
0 1
0 0

]
+

[
0 0
1 0

] [
p11 p12
p12 p22

]
+

[
0

(1/I)

]
(0.001)

[
0 (1/I)

]
−
[
p11 p12
p12 p22

] [
1
0

]
(0.5)−1

[
1 0

] [p11 p12
p12 p22

]
This equation leads to the the following algebraic equations for the components of P e:

0 = 2p12 − 2p211
0 = p22 − 2p11p12

0 =
0.001

I2
− 2p212
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which yields

p12 =

√
0.001

2I2
p11 =

√
p12 .

Hence, the steady-state estimator gain matrix is:

L = PHTR−1y =

[
p11 p12
p12 p22

] [
1
0

]
(0.5)−1 = 2

[
p11
p12

]
= 2

[
(0.001/(2I2))

1
4

(0.001/(2I2))
1
2

]
.

For the case of I = 1, the gain matrix is L =
[
0.2991 0.0447

]T
. Note that also solving for

the gain matrix using the MATLAB kalman() function yields exactly the same result.

Part(b): Compute the closed loop poles of the controller, and also the closed loop poles of
the estimator.

Solution:
The closed loop poles of the controller are found from (A−BK):

(A−BK) =

[
0 1
0 0

]
−
[

0
(1/I)

] [
I
√

10 I
√

2I
√

10 + 1
]

=

[
0 1√
10

√
2I
√

10 + 1

]
For the case of I = 1, the eigenvalues of (A−BK) are −1.3532± 1.1537i.

The closed loop poles of the estimator are found from (A− LH):

(A− LH) =

[
0 1
0 0

]
− 2

[
(0.001/(2I2))

1
4

(0.001/(2I2))
1
2

] [
1 0

]
=

[
2(0.001/(2I2))

1
4 1

(0.001/(2I2))
1
2 0

]
.

For the case of I = 1, the eigenvalues of (A− LH) are −0.1495± 0.1495i.
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