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Computing All Immobilizing Grasps of a
Simple Polygon with Few Contacts

Jae-Sook Cheong,1 Herman J. Haverkort,2 and A. Frank van der Stappen1

Abstract. We study the output-sensitive computation of all the combinations of edges and concave vertices
of a simple polygon that allow an immobilizing grasp with less than four frictionless point contacts. More
specifically, if n is the number of edges, and m is the number of concave vertices of the polygon, we show how
to compute:

• in O(m4/3 log1/3 m + K ) time, all K combinations that allow a form-closure grasp with two contacts;
• in O(n2 log4 m + K ) time, all K combinations that allow a form-closure grasp with three contacts;
• in O(n log4 m+ (nm)2/3 log2+ε m+ K ) time (for any constant ε > 0), all K combinations of one concave

vertex and one edge that allow a grasp with one contact on the vertex and one contact on the interior of the
edge, satisfying Czyzowicz’s weaker conditions for immobilization;

• in O(n2 log3 n + K ) time, all K combinations of three edges that allow a grasp with one contact on the
interior of each edge, satisfying Czyzowicz’s weaker conditions for immobilization.
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1. Introduction. Many applications such as robot hand grasping and manufacturing
operations require an object to be immobilized, such that any motion of the object violates
the rigidity of the object or the contacts. An attractive theoretical model for immobility
was formulated by Reuleaux in 1876 [22]. He defines a rigid body to be in form closure
if a set of contacts along its boundary constrains all finite and infinitesimal motions of
the body. This notion is stronger than immobility, as for instance an equilateral triangle
with a point contact in the middle of each edge is immobilized, but is not in form closure
(it permits an infinitesimal rotation around its center). Form closure depends only on the
position of the contacts and their normals, and is invariant with respect to the curvature of
body and contacts. This is not true for immobility in general: if we replace the equilateral
triangle in the example by its inscribed circle, contacts and normals remain identical, but
the body is no longer immobilized.
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Markenscoff et al. [15] and Mishra et al. [17] independently showed that, with the
exception of a circle, any two-dimensional body can be put in form closure with four
frictionless point contacts, and that almost any three-dimensional body can be put in form
closure with seven such contacts. We call a configuration of frictionless point contacts
that put an object in form closure a form-closure grasp.

We consider the problem of computing all form-closure grasps of a polygonal part.
The availability of all grasps of a certain part allows a user—usually a machinist—to
select the grasps that best meet specific additional requirements, such as accessibility,
which may vary from one operation to another. As the computation of all grasps along a
given combination of edges and vertices can be accomplished in constant time [18], [27],
the algorithmic challenge is to report efficiently all combinations of edges and vertices
that yield at least one grasp. Since placing a contact at a convex vertex may damage the
part, convex vertices are not generally accepted as contact positions, so we restrict the
search to combinations of edges and/or concave vertices.

An algorithm to compute, for a simple polygon with n edges, all the edge combinations
that have a form-closure grasp with four frictionless contacts was presented by van der
Stappen et al. [27]. The algorithm runs in O(n2+ε + K ) time (for any constant ε > 0),
where K is the number of edge quadruples reported. Brost and Goldberg [3] studied the
same problem in modular settings, where the contact positions are restricted to a grid.

Fewer than four point contacts may suffice for form closure if the object has concave
vertices.3 Informally speaking, such vertices allow us to have two contacts at the price of
one, as a contact at a concave vertex can be regarded as lying on both incident edges or
arcs. Form-closure grasps involving concave vertices were first studied by Gopalakrish-
nan and Goldberg [11], who gave an O(m2)-time algorithm to find all K concave vertex
pairs that allow a two-contact form-closure grasp, where m is the number of concave
vertices of the polygon. In Section 2 we improve this to O(m4/3 log1/3 m + K ). All
combinations of one concave vertex and two edges can be reported using a generaliza-
tion of the algorithm by van der Stappen et al. We improve on that by presenting an
O(n2 log4 m + K )-time algorithm. Furthermore, we show how to report all combina-
tions of two concave vertices and one edge in O(n2 +m2 log4 n + K ) time, and finally,
all combinations of three concave vertices in O(m2 log3 m + K ) time. In total, we find
all K combinations of three concave vertices and/or edges that allow a three-contact
form-closure grasp in time O(n2 log4 m + K ).

In Section 3 we turn our attention away from form closure to a different condition
for immobility. Czyzowicz et al. [7] provided a necessary and sufficient geometric con-
dition for a simple polygon to be immobilized by three point contacts. Analogous to
the above, we call a configuration of frictionless point contacts that immobilizes a rigid
body according to this geometric condition an immobility grasp. A more general analysis
applicable to arbitrary objects was given by Rimon and Burdick [23]–[25], who define

3 Fewer than four point contacts also suffice for form closure if there is friction between the contacts and
the object. Several researchers studied what is—in the presence of friction—often referred to as force-closure
grasps. Non-output-sensitive algorithms exist for computing (subsets of) all such grasps of planar objects
with two (see, e.g., [5], [12], and [20]) and three (see, e.g., [19] and [14]) contacts, and with parallel-jaw
grippers [21].
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the term second-order immobility, as it not only takes position and normal, but also cur-
vature of object, contacts, and possible motions into account. Note that all form-closure
grasps are also immobility grasps.

For a simple n-vertex polygon without parallel edges, an algorithm that reports all
the edge triples that yield at least one immobility grasp was given by van der Stappen
et al. [27]. Its running time is O(n2 log2 n + K ′), where K ′ is the number of triples
considered according to some criterion. This criterion is necessary, but not sufficient,
so the algorithm may return triples that do not yield immobility grasps.4 We resolve
this shortcoming by giving a truly output-sensitive algorithm with a running time of
O(n2 log3 n+K ), where K is the number of edge triples such that we can immobilize the
object with a contact on the interior of each edge. Furthermore, we give an O(n log4 m+
(nm)2/3 log2+ε m+K )-time algorithm to report all combinations of an edge and a concave
vertex that yield an immobility grasp.

Note that, in general, a polygon is not guaranteed to allow any two- or three-point
immobility grasps. For example, a square cannot be immobilized without a contact on
each side. However, for polygons without parallel edges, Czyzowicz et al. [7] showed
that there must be at least one three-point immobility grasp—and it will be reported by
our algorithms.

2. On Form-Closure Grasps with Less than Four Contacts. In this section we
explain how to find all combinations of concave vertices and (possibly) edges that allow
a two- or three-point form-closure grasp. We first explain how we can characterize such
combinations in general. It will become clear that there are four cases to distinguish:

• pairs of concave vertices;
• triples of one concave vertex and two edges;
• triples of two concave vertices and one edge;
• triples of concave vertices.

For each of these cases, we give an efficient algorithm to report all combinations that
yield a form-closure grasp.

2.1. Characterization of Form-Closure Grasps. When a force F is applied to an object
P at position p = (px , py), it will make the object translate and/or rotate. The translation
is determined by the force vector f = ( fx , fy). The rotation is determined by the torque
f × p. The full effect is a wrench, which is described as a three-dimensional vector
wF = ( fx , fy, f × p) in wrench space. A contact Ci at position pi can apply force in
the inward normal direction n(pi ) = (nx (pi ), ny(pi )) of the boundary of P at pi . This
results in a wrench λiwi , where wi = (nx (pi ), ny(pi ), n(pi )× pi ) is the “unit wrench”
of contact Ci , and λi ≥ 0 is the magnitude of the force applied by Ci . Our results on
form-closure grasps are based on the following characterization of form closure [10],
[17], [18], [26].

4 For example, the algorithm from [27] would erroneously return the edge triple (e, e′, e′′) in Figure 4(b) of
the present paper as a triple that contains an immobility grasp, while in fact such a grasp does not exist.
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THEOREM 2.1. Given a set of k ≥ 4 wrenches w1, w2, . . . , wk on an object P . Then
the following three conditions are equivalent:

(i) P is in form closure.
(ii) Any wrench wF can be written as −wF = λ1w1 + · · · + λkwk , with λi ≥ 0.

(iii) The origin O lies in the interior of the convex hull of w1, w2, . . . , wk .

The equivalence of (i) and (ii) relies on the fact that the contacts together can be seen to
apply any wrench that is a non-negative combination of the individual contact wrenches.
Intuitively, P is in form closure if and only if any wrench applied to P can be canceled
by such a non-negative combination of contact wrenches. The theorem implies that the
magnitudes of wrench vectors are not important; only the direction matters. Hence, from
here on, we only work with wrenches with unit force vectors.

The equivalence of (ii) and (iii) can be verified easily. Note that if the origin lies on
the boundary of the convex hull of w1, w2, . . . , wk , the object is not in form-closure,
but it may still satisfy Czyzowicz’s conditions for immobility—such cases are treated in
Section 3.

When we place a point contact at a concave vertex p incident to edges e1 and e2, it
provides a range of wrenches. On one extreme, there is the wrench w1 determined by p
and the inward normal n1 of e1. On the other extreme, there is the wrenchw2 determined
by p and the inward normal n2 of e2. The other wrenches provided by the concave vertex
are found as we turn the direction of the force from n1 towards n2. These wrenches can
all be expressed as a positive linear combination λ1w1+ λ2w2, with λ1 ≥ 0 and λ2 ≥ 0.
Therefore these intermediate wrenches can be ignored: they do not contribute anything
to the satisfiability of condition (ii) in Theorem 2.1, so we can view a concave vertex as
a contact that provides a pair of contact wrenches w1 and w2.

We may achieve form closure with less than four point contacts by taking advantage
of concave vertices: thus, two or three contacts can provide up to six wrenches. We
compute all form-closure grasps using concave vertices by finding all combinations of
single wrenches, provided by edge contacts, and pairs of wrenches, provided by concave
vertices, that satisfy the condition in Theorem 2.1. Observe that there are four cases to
distinguish:

• two point contacts can only provide enough wrenches if both of them are in a concave
vertex;
• three point contacts that provide four wrenches, that is two edge contacts and one

contact in a concave vertex;
• three point contacts that provide five wrenches, that is one edge contact and two

contacts in concave vertices;
• three point contacts that provide six wrenches by means of three contacts in concave

vertices.

Note that the fact that four wrenches suffice to keep an object in form closure does not
imply that there must be redundant wrenches in the latter cases. For example, if we take
three lines through the origin in wrench space and place, on each line, a wrench on each
side of the origin, their convex hull contains the origin in its interior. However, no subset
of four or five of these wrenches contains the origin in the interior of its convex hull.
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Fig. 1. The origin O lies in the interior of the convex hull of w1, . . . , w4 if and only if there are points p12 ∈
w1w2 and p34 ∈ w3w4 such that O ∈ p1 p2.

2.2. Pairs of Concave Vertices. In the following we define the segment pq to be the
relatively open segment connecting p and q, that is, the set pq := {λp+ (1− λ)q | 0 <
λ < 1}. We need a simple geometric lemma.

LEMMA 2.1. Letw1, w2, w3, w4 be four points inR3. The origin O lies in the interior of
the convex hull ofw1, . . . , w4 if and only if there are points p12 ∈ w1w2 and p34 ∈ w3w4

such that O ∈ p12 p34.

PROOF. The “if” direction is trivial, so we only prove the “only if” direction.
Suppose the origin O lies strictly inside the tetrahedron formed by w1, w2, w3, and

w4—see Figure 1. Consider the plane � containing w1, w2, and O . It intersects the
segment w3w4 in a point p34. The intersection of the tetrahedron with � is the triangle
w1w2 p34. The point O lies in the interior of this triangle, so the line through O and
p34 intersects w1w2 in the required point p12.

We now build a screen � in wrench space. In wrench space the horizontal dimensions
x and y represent the direction of the force applied by a wrench, while the vertical
dimension z represents the torque that is caused by a wrench. The screen � consists of
two vertically infinite slabs, namely �1 := {(x, 1, z) | −1 < x < 1 + ε, z ∈ R} and
�2 := {(−1, y, z) | −1 < y < 1 + ε, z ∈ R}, where ε is an arbitrarily small positive
constant, which we will explain later.

We project wrenchesw that do not lie on the z-axis onto � as follows. The projection
πi (w) of w on �i is the intersection, if it exists, of �i with the line through w and the
origin O . If w lies between O and πi (w), we color πi (w) black. If O lies between w
and πi (w), we color πi (w) gray. It is easy to see that for each wrench w, at least one of
π1(w) and π2(w) exists. Note that we do not need to consider wrenches that lie on the
z-axis, as the point contacts are unable to apply torque to the object without pushing it.

A segment w1w2 is projected onto � by projecting each point w ∈ w1w2. Note that
a segment w1w2 representing a concave vertex will never intersect the z-axis, since the
angle between the direction of the forces inw1 andw2 must be less than π . The complete
projection π(w1w2) consists of at most four segments on �: one of each color on each
part of the screen—see Figure 2. This is where ε has its purpose in the construction of
the screen: by making the screens just a little bigger than two units wide, we do not have
to worry about interior points of edges becoming endpoints in the projection. They will
always be interior points in the projection on at least one screen.
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Fig. 2. The screen �, with the projection of π(w1w2) of w1w2. In this case the projection consists of three
segments: one black segment on �1 (partially hidden behind �2 in the figure), and a black and a gray segment
on �2.

LEMMA 2.2. Given an object with four contact wrenches w1, w2, w3, w4. The object
is in form-closure if and only if the interior of a gray part of π(w1w2) intersects the
interior of a black part of π(w3w4), or vice versa.

PROOF. By Theorem 2.1 and Lemma 2.1, the object is in form closure if and only if
there exist p12 ∈ w1w2 and p34 ∈ w3w4 such that O ∈ p12 p34. This implies that neither
w1w2 nor w3w4 passes through the origin. Furthermore, on a screen �i where πi (p12)

exists (which must be true for at least one of the screens �1 and �2), we must have
πi (p12) = πi (p34) (since they lie on the same line through the origin) and the colors of
these projections differ (since they lie on different sides of the origin)— see Figure 3.

We now have all the ingredients for an efficient algorithm that reports all pairs of
concave vertices that allow a form-closure grasp by placing two frictionless point contacts
at these vertices. We assume that the concave vertices have already been identified. For
each concave vertex p, we compute the two wrenches w1(p) and w2(p) corresponding
to it, and project the segment w1(p)w2(p) onto �. Let s(p) := π(w1(p)w2(p)) be the
projection. By Lemma 2.2, two concave vertices p and q have a form-closure grasp if
and only if the interiors of s(p) and s(q) form a gray–black intersection in �.
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Fig. 3. π1(w1w2) and π1(w3w4) intersect, and their colors differ. Therefore, the origin O must lie in the
interior of the convex hull of w1, . . . , w4.

The family {s(p)} consists of at most 4m gray and black segments in �, where m
is the number of concave vertices of P . It remains to compute all gray–black inter-
sections in this set, a problem that can be solved in time O(m4/3 log1/3 m + K ), using
the solution by Agarwal [1] with the improvement by Chazelle [4] (Chazelle’s descrip-
tion mentions colorblind intersections only, but his approach also works for gray–black
intersections).

THEOREM 2.2. Given a polygon with m concave vertices, all K form-closure grasps
formed by two concave vertices can be computed in time O(m4/3 log1/3 m + K ).

2.3. Triples of One Concave Vertex and Two Edges. Form closure may also be achieved
by placing three frictionless point contacts, one at a concave vertex p, and one each on two
edges e1 and e2. We now give an algorithm to report all such triples (p, e1, e2). Again,
we have four wrenches: w1 ∈ ê1, w2 ∈ ê2, and the two wrenches w1(p) and w2(p)
corresponding to the concave vertex p. Here, ê is the set of wrenches corresponding to
the possible placement of contacts on the interior of edge e. Since any contact on the
interior of e would work in the direction of the inward normal of e, all unit wrenches
corresponding to possible contacts on e have a common force vector, so ê is a vertical
segment in wrench space.
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Let r(e1, e2) := ⋃{π(w1w2) | w1 ∈ ê1, w2 ∈ ê2}. The region r(e1, e2) is the union
of at most four relatively open trapezoids with two vertical sides, where each trapezoid
is either all gray or all black. For a concave vertex p, let s(p) be as above in Section 2.2.
By Lemma 2.2, a triple (p, e1, e2) allows a form-closure grasp if and only if a black part
of s(p) intersects a gray trapezoid of r(e1, e2), or vice versa. Observe that the edges of
P define O(n2) trapezoids: at most four trapezoids for each pair of edges.

It remains to solve the following problem: given a set of m line segments and a set
of O(n2) trapezoids, find all intersections between a line segment and a trapezoid. We
observe that a segment s intersects a trapezoid r if and only if the midpoint of s lies in r ,
or s intersects one of the sides of r . We test the two cases separately.

For the first we use a triangle search structure, which stores a set P of points in R2

and supports queries of the following form: given a query triangle �, report the points
in � ∩ P . For the second we use a segment intersection structure that stores a set S
of line segments in R2, and supports queries of the form: given a query segment q,
report all segments s ∈ S with s ∩ q �= ∅. For both data structures, there are several
alternatives. However, in this paper, we stick to data structures based on Matoušek’s
hierarchial cuttings [16], because of the good bounds on the preprocessing time. This
works well for our application, but if the number of concave vertices m is very small
in comparison with the number of edges n, slightly better solutions may be possible by
choosing data structures with slightly more preprocessing time—see, for example, the
survey by Agarwal and Erickson [2].

Matoušek explains how we can build, for any set P of m points in the plane, and a
prescribed parameter t such that log m ≤ t ≤ m, a tree of height O(log m) with the
following properties:

• the number of nodes at depth i is O(ρ2i ), for some constant ρ; each node v at depth
i has an associated subset Pv of P of size O(m/ρi );
• there are O((m/t)2) leaves v, and their sets Pv have size O(t);
• for any half-plane H , the points in P ∩ H are exactly the points in the sets associated

with a set of non-leaf nodes (one node at each depth in the tree), plus some or all of
the points in a single leaf. The set of non-leaf nodes and the leaf can be identified in
O(log m) time.

The tree can be built in O(m2/t) time.5 If we just store the sets Pv explicitly, this tree can
obviously be used to answer half-plane range-reporting queries in O(log m + t + k) =
O(t + k) time: find the leaf, check its complete contents, and find the non-leaf nodes,
and just report their complete contents.

To extend this approach to a triangle search or segment intersection structure, we
proceed as follows. We generalize the above tree a little. Instead of points p, we store
tuples of points (p1, . . . , ph). The half-plane property of the tree will now read as: “For
any half-plane H , the tuples {(p1, . . . , ph)|p1 ∈ H} are exactly the tuples. . . .” We call
such a tree an order-1 tree. A tree of order j , for j > 1, will be just like an order-1 tree,
with two exceptions. First, and most important, each set Pv for a node v of the order- j
tree will be stored as a tree of order ( j − 1) on the tuples in Pv . Second, the half-plane

5 Theorem 5.1 from [16], with r = m/t and d = 2. Note that there is a typographical error in Matoušek’s
publication: it says O(ρi ) instead of O(ρdi ).
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property now reads as: “For any half-plane H , the tuples {(p1, . . . , ph)|pj ∈ H} are
exactly the tuples. . . .”

LEMMA 2.3. A tree of order j :

• can be built in time O(m2(log j−1 m)/t), and
• can be used to report, for any set of j half-planes (H1, . . . , Hj ), all tuples
{(p1, . . . , ph)|∀1≤i≤ j , pi ∈ Hi }, in time O(t log j−1 m + k), where k is the number of
tuples reported.

PROOF. We prove the lemma by induction on j .
For j = 1, it is obviously true.
The construction of a tree of order j > 1 consists of the construction of the main

structure, in O(m2/t) time, and the construction of the associated trees of order ( j − 1).
By the induction hypothesis, the construction of an order-( j − 1) tree at depth i in the
order- j tree takes O((m/ρi )2(log j−2 m)/t) time. The construction times thus add up to

O

(
m2

t

)
+

O(log m)∑
i=0

O(ρ2i )O

((
m

ρi

)2 log j−2 m

t

)
= O

(
m2 log j−1 m

t

)
.

The search in an order- j tree with Hj yields O(log m) nodes whose order-( j−1) trees
have to be searched. By the induction hypothesis, searching the order-( j −1) trees costs
O(t log j−2 m+ k) time for each tree, which adds up to O(t log j−1 m+ k). Furthermore,
one leaf of size t has to be searched, for a cost of O(t), so that the total time spent
searching is O(t log j−1 m + k).

COROLLARY 2.1. In O(m2 log m) time, we can build a triangle search structure on a
set S of m points that answers queries in O(log3 m + k) time, where k is the number of
points in S that lie inside the query triangle.

PROOF. We build a tree of order 3 with t = log m and store each point p ∈ S in it as
a tuple (p, p, p). To answer a triangle query, we search the order-3 tree with the three
half-planes whose intersection is the query triangle. By Lemma 2.3, the tree can be built
in O(m2 log m) time and answers queries in O(log3 m + k) time.6

COROLLARY 2.2. In O(m2) time, we can build a triangle search structure on a set S of
m points that answers queries in O(log4 m+ k) time, where k is the number of points in
S that lie inside the query triangle.

PROOF. We follow the same approach as in Corollary 2.1, but now with t = log2 m.

6 With Theorem 6.1 in Matoušek’s publication [16], he improves the construction time for the triangle search
structure to O(m2 logε m) (with the same query time) for any constant ε > 0; the same technique could be
used to improve the construction time for the segment intersection structure to O(m2 log1+ε m). However,
these improvements do not affect our final bounds, so we ignore them for simplicity.
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COROLLARY 2.3. In O(m2 log2 m) time, we can build a segment intersection structure
on a set of m line segments that answers queries in O(log4 m + k) time, where k is the
number of line segments in S that intersect the query segment.

PROOF. We use the same transformation as, for example, in [2]. Assume that there are
no vertical segments (if there are vertical segments, we must turn everything just a little
to prevent degeneracies). We build an order-4 tree with t = log m, storing each line
segment s = s0s1 as a tuple (l∗(s), l∗(s), s0, s1), where l∗(s) = (a, b) is the dual of the
supporting line l(s) : y = ax+b of s. Observe that a query segment q = q0q1 intersects
s if and only if the following two conditions are met:

• s0 lies above l(q) while s1 lies below l(q) (or the other way around), and
• q0 lies above l(s) while q1 lies below l(s), or, equivalently, l∗(s) lies below the dual

line q∗0 of q0 and above the dual line q∗1 of q1 (or the other way around).

An intersection query with a line segment can thus be formulated as a query with
four half-planes, bounded by q∗0 , q∗1 , and l(q) (twice) in the order-4 tree storing tuples
(l∗(s), l∗(s), s0, s1).

To return to solving our original problem: we build, in O(m2 log m) time, a triangle
search structure on the set of midpoints of the segments: this permits queries with a
trapezoid (by decomposing it into triangles), identifying the k points inside the trapezoid
in O(log3 m + k) time (Corollary 2.1). Furthermore, we build, in O(m2 log2 m) time,
a segment intersection structure for segment intersection queries on the segments that
represent the concave vertices. Finding all k segments intersecting a given trapezoid
boundary takes O(log4 m + k) time (Corollary 2.3).

To find all the k segments intersecting a given trapezoid, we query both data struc-
tures, in total time O(log4 m + k). Since there are O(n2) trapezoids, this takes time
O(n2 log4 m + K ).

THEOREM 2.3. Given a polygon with m concave vertices and n edges, all K combina-
tions of one concave vertex and two edges, such that one contact on the vertex and one
each on the interior of each edge can put the object in form closure, can be computed in
time O(n2 log4 m + K ).

2.4. Triples of Two Concave Vertices and One Edge. Placing two point contacts at a
pair of concave vertices p, q may not achieve form closure. Placing one more contact in
the interior of an appropriate edge e, however, can achieve form closure with p and q.
Here, we present an algorithm to report all such triples (p, q, e).

Consider a pair of concave vertices p, q that does not achieve form closure. Let
w1, w2 and w3, w4 be the wrenches induced by p and q, respectively, and let W :=
{w1, w2, w3, w4}. By Theorem 2.1 the origin O does not lie in the interior of the convex
hull of W . An additional edge contact achieves form closure if and only if O lies in
the interior of the convex hull of W ∪ {w}, where w is the wrench induced by the
contact.
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Let W ′ := W ∪ {O}. The convex hull of W ′ is a convex polytope with four or five
vertices,7 one of which is O . Consider a facet fi incident to O , and let Hi be the open
half-space bounded by the supporting plane of fi not containing W ′. If O lies in the
interior of the convex hull of W ∪ {w}, for some w, then w ∈ Hi for all i’s. Conversely,
if this is true for every facet incident to O , then O does lie in the interior of the convex
hull of W ∪ {w}.

It follows that an edge e can achieve form closure together with p and q if and only
if the wrench space segment ê intersects the intersection of three or four half-spaces.
The bounding planes of these half-spaces pass through O , so we can again project
everything onto a two-dimensional screen. Here, we do not wish to identify wrenches
that are symmetric around the origin, so we use a screen �′ enclosing the origin as
follows:

�′ := {(x, y, z)|max(|x |, |y|) = 1, z ∈ R}.
To prevent degeneracies, we would turn the screen a little so that no segment is projected
onto an edge of the screen. We project the n segments ê onto �′, build a triangle search
structure on their endpoints (applying Corollary 2.2), and a segment intersection structure
on the segments themselves.

Before we choose the segment intersection structure, observe that all segments to be
stored are vertical. A query segment q = q0q1, where qi = (x(qi ), y(qi )), intersects
a stored segment s = s0s1, where si = (x(s), y(si )), if and only if the following two
conditions are met:

• s0 lies above l(q) while s1 lies below l(q) (or the other way around), and
• x(s) lies between x(q0) and x(q1).

Therefore, we can solve our query problem with an order-2 structure, as explained in the
previous section. The structure stores tuples (s0, s1), and stores the sets Pv associated
with internal nodes in order-1 trees sorted by x-coordinate. We can pre-sort all segments
by x-coordinate as an initialization step, and keep them sorted while distributing and
copying them to subtrees, so that no further sorting is necessary. Thus, the complete
structure can be constructed in the same time bound as a normal order-2 structure: with
t = log n, we get construction time O(n2). The query time of an order-2 structure with
t = log n is normally O(log2 n+ k), but in this case we cannot just report all contents of
the internal nodes found: we have to do a binary search to report only those segments with
x-coordinates between x(q0) and x(q1). This increases the query time to O(log3 n+ k).

In total, both data structures are built in O(n2) time. We now consider each pair (p, q)
of concave vertices in turn. We compute the wrenches W induced by the two vertices,
the convex hull of W ∪ {O}, and the intersection R of the three or four relevant half-
spaces. We then compute R′ := R ∩ �′, a polygonal area of constant complexity. We
triangulate R′, and find the k segment endpoints inside R′ by triangle range queries in
time O(log4 n+ k). Furthermore, we find all k segments intersecting the boundary of R′

7 If W ′ has four vertices, one of the wrenches is redundant. This means that form closure could also be achieved
by placing point contacts on e, at one of the vertices p or q, and on one of the edges incident to the other
vertex. This triple will be reported by the algorithm given above for finding all combinations of one concave
vertex and two edges that yield a form-closure grasp.
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in time O(log3 n+ k) by a constant number of segment intersection queries. Since there
are �(m2) pairs of concave vertices, the total running time is O(n2 + m2 log4 n + k).

To list all triples of two concave vertices and one edge that yield a form-closure grasp,
we should also run the algorithm of Section 2.2, to get, in time O(m4/3 log1/3 m+ k), all
k pairs of concave vertices that yield a form-closure grasp, and combine the result with
every edge of the polygon.

THEOREM 2.4. Given a polygon with m concave vertices and n edges, all K combina-
tions of two concave vertices and one edge, such that one contact each on each vertex
and one contact on the interior of the edge can put the object in form closure, can be
computed in time O(n2 + m2 log4 n + K ).

It would be possible to trade some of the dependency on n in this bound for dependency
on m, by exploiting the trade-off between preprocessing and query time for triangle
search and intersection search structures. However, in the end it would not affect the
final bounds for describing all three-point form-closure grasps, as that requires running
the O(n2 log4 m + K )-time algorithm from the previous section anyway. The latter will
dominate the bound on the total running time.

2.5. Triples of Concave Vertices. A triple of concave vertices (p, q, r) induces six
wrenchesw1, . . . , w6. Three point contacts in these vertices put an object in form closure
if the convex hull of the six wrenches contains the origin in its interior. We can distinguish
two cases:

1. a subset of five wrenches already contains the origin in the interior of its convex hull,
and thus achieves form closure;

2. no subset of five wrenches contains the origin in the interior of its convex hull.

In the first case, only two of the concave vertices contribute two wrenches to the convex
hull. The contact in the third vertex contributes only one wrench: it can be regarded
as being only on the appropriate edge incident to that vertex. The first case is thus
very similar to the case discussed in Section 2.4. The algorithm of that section can
easily be adapted to list all such cases. We will use a triangle search structure only, not
the segment intersection structure, and store only the edge endpoints that are actually
concave vertices. Applying Corollary 2.1, building the data structure takes O(m2 log m)
time; we do O(m2) queries in O(log3 m + k) time each; thus, we can list all triples of
concave vertices of the first case in time O(m2 log3 m + K ).

For the second case, we make use of the following lemma from the theory of positive
bases [8], [13]:

LEMMA 2.4. Let S be any set of six points in R3 such that the convex hull of S contains
the origin in its interior, but no subset of five points of S contains the origin in the interior
of its convex hull. It follows that S consists of six points on three lines through the origin:
on each line, one point to each side of the origin.

It follows that the wrenches induced by the three concave vertices must form three pairs
of opposite wrenches. Since no vertex contact could induce opposite wrenches itself,
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it follows that we are looking for triples (p, q, r) where w1(q) = −w2(p), w1(r) =
−w2(q), and w1(p) = −w2(r).

A straightforward algorithm is now as follows. We sort all wrenches induced by
concave vertices lexicographically. For every concave vertex p, we search in the sorted
list for matching vertices q , that is, vertices q with w1(q) = −w2(p). For each vertex
q found, we do another search for a vertex r such that w1(r) = −w2(q) and w2(r) =
−w1(p). If such a vertex r is found, we report the triple (p, q, r).

The sorting is done in O(m log m) time. The query for q, and testing for a matching
r , takes O(log m) time per candidate-q which is tested, which amounts to O(m log m) in
the worst case. Searching for matching q and r for each vertex p thus takes O(m2 log m)
time.

In total, both cases can be dealt with in O(m2 log3 m + K ) time.

THEOREM 2.5. Given a polygon with m concave vertices and n vertices in total, all
K form-closure grasps formed by three concave vertices can be computed in time
O(m2 log3 m + K ).

3. Computing All Immobility Grasps. In this section we explain how to find com-
binations of three edges and combinations of a concave vertex and an edge, that allow a
three- or two-point immobility grasp, respectively.

We first introduce some notations and definitions used in this section. Let the edges
of the simple polygon P be oriented counterclockwise around P , that is, P lies locally
to the left of each edge. We denote the line orthogonal to an edge e through the start
and endpoint of e by s0(e) and s1(e), respectively. Let ŝ(e) be the relatively open infinite
slab bounded by s0(e) and s1(e), that is, the union of all lines that are orthogonal to and
intersect the interior of e (see Figure 6). Let l(e) be the supporting line of e, and let
H(e) be the open half-plane bounded by l(e) lying locally to the left of e, that is, locally
containing P (see Figure 4). When the intersection of H(e), H(e′), and H(e′′) forms a
(finite) triangle, then e, e′, and e′′ are said to be a triangular triple. (Compare Figure 4(a)
with (b).)

3.1. Immobility Grasps with Three Contacts. A necessary and sufficient condition for
three edges to have a configuration of three point contacts that immobilizes a simple
polygon is provided by Czyzowicz et al. [7].

(a) (b)

H(e)

H(e′)

H(e′′)H(e)

H(e′)

H(e′′)e

e′′

e′

e

e′′

e′
I ′

I I ′′
I ′

I
I ′′

Fig. 4. The edges e, e′, and e′′ in (a) are a triangular triple, while those in (b) are not.
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(a) (b) (c)e

L U

Fig. 5. (a) A polygon with directed edges, oriented such that e is on the y-axis, pointing upward. The edges in
(b) L and (c) U .

LEMMA 3.1 [7]. There are three point contacts on the interior of three edges e, e′, and
e′′ that immobilize a polygon if and only if:

(i) ŝ(e) ∩ ŝ(e′) ∩ ŝ(e′′) �= ∅ (common normal intersection condition), and
(ii) H(e) ∩ H(e′) ∩ H(e′′) is a triangle (triangular triple condition).

To find all such edge triples, we take a similar approach as in [27]. We find all the
edge triples that have a common normal intersection; among these, triangular triples will
be filtered out. The sketch of the global approach is as follows. For each edge e of P ,
we build a data structure. It will be queried with each of the remaining n− 1 edges e′, to
report all edges e′′ such that the triple (e, e′, e′′) satisfies the conditions of Lemma 3.1.

From now on, we focus on building and searching the data structure for a fixed edge e.
We choose a coordinate system such that l(e) is the y-axis, oriented in upward direction.
We divide the remaining edges into two groups L(ower) and U (pper); when an edge
forms an angle between −π/2 and π/2 with the positive x-axis, it is in L , otherwise it
is in U (see Figure 5(b) and (c)). We omit all vertical edges from L and U , since they
could never make a triangular triple with e and a third edge. For i ∈ {0, 1}, we define l ′i
and r ′i as the x-coordinates of the left and right intersection points of si (e) and the slab
boundaries of ŝ(e′). We define l ′′0 , r

′′
0 , l
′′
1 , and r ′′1 for edge e′′ likewise—see Figure 6. The

following is a necessary and sufficient condition for three edges to have a non-empty
common normal intersection region.

e

e′
e′′l′0 r′0 l′′0 r′′0

l′1 r′1l′′1 r′′1

ŝ(e′) ŝ(e′′)

ŝ(e)

s0(e)

s1(e)

Fig. 6. Notation for Lemma 3.2.



Computing All Immobilizing Grasps of a Simple Polygon 131

LEMMA 3.2. Two slabs ŝ(e′) and ŝ(e′′) have a common intersection with ŝ(e) if and
only if one of the following is true:

(i) l ′0 < r ′′0 ∧ l ′′1 < r ′1,
(ii) l ′′0 < r ′0 ∧ l ′1 < r ′′1 .

PROOF. We first prove that if one of the conditions (i) or (ii) is met, then there is a
common intersection. After that we prove that if neither of the conditions is fulfilled,
there cannot be a common intersection.

The “if” direction: the two cases are identical except for e′ and e′′ switching roles,
so without loss of generality, we restrict ourselves to the first case. Condition (i) implies
that the line segments l ′0r ′1 and r ′′0 l ′′1 intersect (see Figure 6 for an example). The first line
segment lies completely inside ŝ(e) and ŝ(e′); the second lies completely inside ŝ(e) and
ŝ(e′′). Hence, their intersection lies in all three slabs, which means that the intersection
of ŝ(e), ŝ(e′), and ŝ(e′′) is not empty.

The “only-if” direction: suppose neither condition (i) nor (ii) is true, i.e., the following
is true:

(l ′0 ≥ r ′′0 ∨ l ′′1 ≥ r ′1) ∧ (l ′′0 ≥ r ′0 ∨ l ′1 ≥ r ′′1 ).

Because, by definition, r ′0 > l ′0 and r ′′0 > l ′′0 , we cannot simultaneously have l ′0 ≥ r ′′0 and
l ′′0 ≥ r ′0. Likewise, we cannot simultaneously have l ′1 ≥ r ′′1 and l ′′1 ≥ r ′1. It follows that
the proposition above is equivalent to

(l ′0 ≥ r ′′0 ∧ l ′1 ≥ r ′′1 ) ∨ (l ′′0 ≥ r ′0 ∧ l ′′1 ≥ r ′1).

In other words: the left boundary of one slab of ŝ(e′) and ŝ(e′′) lies to the right of the
right boundary of the other slab, and the situation is the same both at the intersection
with the lower boundary of ŝ(e), and at the intersection with the upper boundary of ŝ(e).
It follows that the intersections of ŝ(e′) and ŝ(e′′) with ŝ(e) are disjoint.

So if there is a common intersection, at least one of the conditions must be fulfilled,
and if at least one of the conditions is fulfilled, there must be a common intersection.

Suppose l(e′) is the line defined by y = a′x + b′, and l(e′′) is the line defined by
y = a′′x + b′′.

LEMMA 3.3. H(e) ∩ H(e′) ∩ H(e′′) is a triangle if and only if one of the following is
true:

(i) a′ < a′′ ∧ b′ < b′′ ∧ e′ ∈ L ∧ e′′ ∈ U .
(ii) a′′ < a′ ∧ b′′ < b′ ∧ e′ ∈ U ∧ e′′ ∈ L .

PROOF. Let I ′ be the intersection (0, b′′) of l(e) and l(e′′); let I ′′ be the intersection
(0, b′) of l(e) and l(e′), and let I be the intersection (Ix , Iy) of l(e′) and l(e′′), where
Ix = (b′′ − b′)/(a′ − a′′) and Iy = a′ Ix + b′ = a′′ Ix + b′′ (see Figure 4). Observe that
H(e)∩H(e′)∩H(e′′) is a triangle if and only if I ∈ H(e), I ′ ∈ H(e′), and I ′′ ∈ H(e′′).

We first prove that if one of the conditions (i) or (ii) holds, H(e) ∩ H(e′) ∩ H(e′′) is
a triangle, and then that if the latter is a triangle, one of the conditions must be fulfilled.
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The “if” direction: the two cases are identical except for e′ and e′′ switching roles, so
without loss of generality, we restrict ourselves to the first case. Condition (i) (as well
as (ii)) implies that Ix < 0, so I ∈ H(e). Furthermore, e′ ∈ L means that H(e′) is the
half-plane above l(e′); since b′ < b′′, we have that I ′ = (0, b′′) lies above l(e′), and thus
inside H(e′). Likewise, from e′′ ∈ U and b′ < b′′ it follows that I ′′ ∈ H(e′′). Hence,
H(e) ∩ H(e′) ∩ H(e′′) is a triangle.

The “only-if” direction: suppose H(e) ∩ H(e′) ∩ H(e′′) is a triangle, then I =
l(e′) ∩ l(e′′) ∈ H(e), that is Ix = (b′′ − b′)/(a′ − a′′) < 0. This implies that one of the
following is true:

(1) a′ < a′′ ∧ b′ < b′′.
(2) a′′ < a′ ∧ b′′ < b′.

In the first case, I ′ = (0, b′′) lies above I ′′ = (0, b′), so the triangle formed by the l(e′),
l(e′′), and the y-axis l(e), is bounded by l(e′) from below and by l(e′′) from above. From
the fact that this triangle lies inside H(e′) and H(e′′), it follows that e′ ∈ L and e′′ ∈ U ,
fulfilling condition (i) of the lemma. In the same manner, we can derive that the second
case implies that e′ ∈ U and e′′ ∈ L , fulfilling condition (ii) of the Lemma.

From Lemmas 3.1–3.3 it follows that e, e′, and e′′ allow a three-point immobility
grasp if and only if one of the following conditions is satisfied:

(i) l ′′1 < r ′1 ∧ r ′′0 > l ′0 ∧ a′′ > a′ ∧ b′′ > b′ ∧ e′ ∈ L ∧ e′′ ∈ U .
(ii) l ′′1 < r ′1 ∧ r ′′0 > l ′0 ∧ a′′ < a′ ∧ b′′ < b′ ∧ e′ ∈ U ∧ e′′ ∈ L .

(iii) l ′1 < r ′′1 ∧ r ′0 > l ′′0 ∧ a′′ > a′ ∧ b′′ > b′ ∧ e′ ∈ L ∧ e′′ ∈ U .
(iv) l ′1 < r ′′1 ∧ r ′0 > l ′′0 ∧ a′′ < a′ ∧ b′′ < b′ ∧ e′ ∈ U ∧ e′′ ∈ L .

Since the roles of e′ and e′′ are interchangeable, we only need to search for triples
satisfying condition (i) or (ii). We can do this with two four-dimensional orthogonal
range trees [9] as follows. In the first tree, store every edge e′′ ∈ U as a four-dimensional
point (l ′′1 , r

′′
0 , a′′, b′′). Query this tree with every edge e′ ∈ L for all points in 〈−∞, r ′1〉×

〈l ′0,∞〉 × 〈a′,∞〉 × 〈b′,∞〉. In the second tree, store every edge e′′ ∈ L as a four-
dimensional point (l ′′1 , r

′′
0 , a′′, b′′). Query this tree with every edge e′ ∈ U for all points

in 〈−∞, r ′1〉 × 〈l ′0,∞〉 × 〈−∞, a′〉 × 〈−∞, b′〉. Every edge e′′ reported forms a triple
with e and e′ such that three point contacts on e, e′, and e′′ will immobilize the polygon.

Now we analyze the time complexity of this algorithm. A four-dimensional orthogonal
range tree can be built in O(n log3 n) time using O(n log3 n) space, and can be queried
in O(log4 n + k) time (see Chapter 5.4 in [9]). This can be improved to O(log3 n + k)
query time, with the same building time, using fractional cascading (see Chapter 5.6
in [9]).

We query each tree with O(n) edges e′, for a total building and query time of
O(n log3 n + k) per tree, and we do this for every edge e, so that the complete search
takes O(n2 log3 n + k) time.

THEOREM 3.1. Given a polygon with n edges, all K edge triples (e, e′, e′′) such that
the polygon can be immobilized by three frictionless point fingers on the interiors of e,
e′, and e′′, can be computed in time O(n2 log3 n + K ).
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Fig. 7. (a) Notations of normals of edges and concave vertices. (b) Vertex p is in the simplex S(e) of edge e.

3.2. Immobility Grasps with Two Contacts. If we exploit concave vertices, two contacts
can immobilize a simple polygon: one at a concave vertex p and the other in the interior
of an edge e. When a polygon has n edges and m concave vertices, all such pairs can be
reported in time O(mn) by simply checking all vertex–edge pairs. Obviously we want a
more efficient algorithm. We could adapt the algorithm in Section 3.1 to find and report
only triples of edges where two edges are in fact reduced to points that coincide on a
concave vertex. However, this would cost even more than O(mn) time. Therefore we
develop a specialized algorithm based on the lemma below.

First, we introduce some notations used in this section. Let e′ and e′′ be the edges
incident to p. Let n′p be the inward normal to e′, and let n′′p be the inward normal to
e′′. Let Cone(n′p, n′′p) be {λ′n′p + λ′′n′′p|λ′, λ′′ > 0}, that is, the set of all positive linear
combinations of n′p and n′′p. In the same way, let Cone−(n′p, n′′p) be the set of all positive
linear combinations of −n′p and −n′′p (see Figure 7(a)). For each edge e, let ne be the
inward normal to e, and let the open simplex S(e) be ŝ(e) ∩ H(e) (see Figure 7(b).)

LEMMA 3.4. Placing two point contacts at a concave vertex p and on an edge e im-
mobilizes a polygon if and only if:

(i) ne ∈ Cone−(n′p, n′′p), and
(ii) p ∈ S(e).

PROOF. Let e′ and e′′ be the adjacent edges to p, shrunk onto the vertex p, so that ŝ(e′)
is the line orthogonal to e′ through p, and ŝ(e′′) is the line orthogonal to e′′ through p. We
first show that any three edges e, e′, and e′′ satisfying the above statement must satisfy
Lemma 3.1. Since p = ŝ(e′)∩ŝ(e′′) ∈ S(e) ⊂ ŝ(e), we must have ŝ(e)∩ŝ(e′)∩ŝ(e′′) �= ∅.
Furthermore, since p ∈ S(e) ⊂ H(e), the intersection H(e) ∩ H(e′) ∩ H(e′′) �= ∅. In
fact, H(e)∩ H(e′)∩ H(e′′) is a triangle, because ne ∈ Cone−(n′p, n′′p), i.e., the normals
of e, e′, and e′′ span the plane positively.

We now show that any three edges e, e′, and e′′, such that e′, and e′′ are both adjacent
to and shrunk onto a common concave vertex p, and e, e′, and e′′ satisfy Lemma 3.1,
must also satisfy the two conditions above. The common normal intersection condition
assures that p ∈ ŝ(e). The triangular triple condition, that H(e) ∩ H(e′) ∩ H(e′′) �= ∅,
implies that the normals of the edges span the plane positively, which proves that ne ∈
Cone−(n′p, n′′p).
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For any edge e and any concave vertex p, let θe, θ ′p, and θ ′′p be the angles that ne,
−n′p, and −n′′p, respectively, make with the positive x-axis. Let θ ′p be the smaller angle
of θ ′p and θ ′′p , i.e., θ ′p < θ ′′p . Observe that ne ∈ Cone−(n′p, n′′p) if and only if one of the
following is true:

(i) θ ′′p − θ ′p < π ∧ θe ∈ 〈θ ′p, θ ′′p 〉.
(ii) θ ′′p − θ ′p > π ∧ θe ∈ [−π, θ ′p〉 ∪ 〈θ ′′p , π ].

For a given edge e, we find all concave vertices that have a two-point immobilizing
grasp with e. For this, we store the concave vertices in a data structure that stores pairs
of the form (Ip, p), where Ip is a one-dimensional interval and p is a point in the plane.
Each vertex p with θ ′′p − θ ′p < π is stored once, as a pair (〈θ ′p, θ ′′p 〉, p). Each vertex p
with θ ′′p −θ ′p > π is stored twice: once as a pair (〈−∞, θ ′p〉, p) and once as (〈θ ′′p ,∞〉, p).
We query this data structure with each edge e of P , to report all vertices p stored as a
pair (Ip, p) such that θe ∈ Ip and p ∈ S(e).

The data structure we use is a two-level data structure. The top level is a segment
tree [9] on the intervals Ip. Let X be the set of all begin and endpoints of intervals Ip to
be stored in the tree, in order of increasing value. A segment tree is a balanced binary
tree on the intervals between consecutive values from X : each leaf is associated with
one such interval. Each internal node v is associated with an interval I (v), which is the
union of the intervals of its descendants. With each node v, we associate a data structure
T (v) that stores all pairs (Ip, p) such that Ip contains I (v) but not I (parent(v)). In our
case the data structures T (v) will be simplex search structures on the points p in the
pairs (Ip, p). We use a simplex search structure by Matoušek [16], using O(mα) space
to store O(m) points, for a certain constant α. We explain later how α is chosen, but in
any case, we choose it such that 1 < α ≤ 2.

We first analyse the time needed to construct the data structure. A simplex range
searching structure can be built in time O(mα logε m), for any constant ε > 0, where m
is the number of points stored, mα is the amount of storage used for them, and ε is any
small positive constant [16].8 A node v at depth i in a segment tree stores intervals Ip that
completely contain I (v), but not I (parent(v)), which means that all intervals Ip stored in
vmust have an endpoint in I (brother(v)). Since the segment tree is balanced, there are at
most 2m/2i such intervals. Thus, at each depth i in the segment tree, we have at most 2i

nodes storing at most 2m/2i intervals each. The time needed to build the complete tree
thus becomes O(m log m) (for the segment tree itself) plus, for the associated simplex
search structures, O(

∑log m
i=0 2i O((m/2i )α logε(m/2i ))). Since α > 1, the larger simplex

search structures dominate, making a total construction time of O(mα logε m).
A query with an edge e for matching p in this multi-level data structure proceeds

as follows. We walk down the segment tree, finding all O(log m) nodes v (one at each
depth) such that I (v) contains θe. Together, these nodes contain all pairs (Ip, p) such
that Ip contains θe. For each of these nodes, we search the associated simplex search
structure, and report the answers. A query in a simplex range searching structure on m
points with mα storage is answered in O(m(log3 mα−1)/

√
mα+k) time.8 The total time

8 Theorem 6.2 in Matoušek’s publication, with d = 2, p = 3, Matoušek’s n is our m, and Matoušek’s m is
our mα .
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for a query in our data structure is therefore

O

(�log m�∑
i=0

(
1+ O

(
m

2i

log3(m/2i )α−1√
(m/2i )α

))
+ k

)
.

If α = 2, this is O(log4 m + k), otherwise it is O(m(log3 m)/
√

mα + k).
Since we do n queries, the time for building and querying the data structure adds up

to O(mα logε m+n log4 m+ K ) (for α = 2) or O(mα logε m+nm(log3 m)/
√

mα+ K )
(for 1 < α < 2).

We now choose α. If m/log3/2 m ≤ √n, we choose α = 2, and the algorithm runs in
O(n log4 m + K ) time. Otherwise, we have

√
n < m/log3/2 m, so n2/3 log2 m < m4/3,

and thus (mn)2/3 log2 m < m2. Furthermore we have n > m, so certainly n2/3 log2 m >

m1/3, and thus (mn)2/3 log2 m > m. Hence we can choose α such that 1 < α < 2 and
mα = (mn)2/3 log2 m, resulting in a total running time of O(mα logε m + nm(log3 m)/√

mα + K ) = O((mn)2/3 log2+ε m + K ).

THEOREM 3.2. Given a polygon with n edges and m concave vertices and any constant
ε > 0, all K pairs of an edge e and a concave vertex p such that the polygon can be
immobilized by two frictionless point fingers on e and at p, can be computed in time
O(n log4 m + (mn)2/3 log2+ε m + K ).

4. Discussion. We gained a better understanding of wrenches induced by frictionless
point fingers on polygons, and used this to provide a simple characterization of sets
of edges and concave vertices that yield form-closure grasps. We provided theoretically
efficient algorithms to compute all sets of less than four edges and concave vertices that fit
our characterization of form-closure or fulfill Czyzowicz’s conditions for second-order
immobility. Thus we complete the results by van der Stappen et al. [27], who provided
an output-sensitive algorithm to compute all sets of four edges that yield a form-closure
grasp. Our characterization of form-closure grasps may be extended to curved objects [6]
or to higher dimensions. However, generalizing our algorithms to three dimensions will
significantly increase the exponents in the running times and possible output size, so a
more practical implementation of our characterization, or even a completely different
approach, may be called for. It may be more practical if an algorithm would only generate
one grasp that, for example, is least sensitive to errors in finger placement, minimizes
forces applied to the object, or is easiest to realize. Characterizing such grasps and finding
efficient algorithms to find one remains as an open problem.
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