The Classical Matrix Groups

CDs 270, Spring 2010/2011

The notes provide a brief review of *matrix groups*. The primary goal is to motivate the language and symbols used to represent rotations (SO(2) and SO(3)) and spatial displacements (SE(2) and SE(3)).

1 Groups

A group, G, is a mathematical structure with the following characteristics and properties:

- i. the group consists of a set of elements $\{g_j\}$ which can be indexed. The indices j may form a finite, countably infinite, or continuous (uncountably infinite) set.
- ii. An associative binary group operation, denoted by '*', termed the group product. The product of two group elements is also a group element:

$$\forall g_i, g_j \in G$$
 $g_i * g_j = g_k$, where $g_k \in G$.

iii. A unique group identify element, e, with the property that: $e * g_j = g_j$ for all $g_j \in G$.

iv. For every $g_j \in G$, there must exist an inverse element, g_i^{-1} , such that

$$g_j * g_j^{-1} = e$$

Simple examples of groups include the integers, \mathbb{Z} , with addition as the group operation, and the real numbers mod zero, $\mathbb{R} - \{0\}$, with multiplication as the group operation.

1.1 The General Linear Group, $\mathcal{GL}(N)$

The set of all $N \times N$ invertible matrices with the group operation of matrix multiplication forms the *General Linear Group* of dimension N. This group is denoted by the symbol GL(N), or $\mathcal{GL}(N, \mathbb{K})$ where K is a field, such as \mathbb{R} , \mathbb{C} , etc. Generally, we will only consider the cases where $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$, which are respectively denoted by $\mathcal{GL}(N, \mathbb{R})$ and $\mathcal{GL}(N, \mathbb{C})$. By default, the notation GL(N) refers to real matrices; i.e., $\mathcal{GL}(N) = \mathcal{GL}(N, \mathbb{R})$.

The identity element of $\mathcal{GL}(N)$ is the identify matrix, and the inverse elements are clearly just the matrix inverses. Note that the product of invertible matrices is necessarily invertible. If $A, B \in \mathcal{GL}(N)$, then $det(A) \neq 0$ and $det(B) \neq 0$. Hence, $det(AB) = det(A) det(B) \neq 0$. Similarly, $det[(AB)^{-1}] = det[A^{-1}] det[B^{-1}] = (1/det(A)) (1/det(B)) \neq 0$.

2 Subgroups

A subgroup, H, of G (denoted $H \subseteq G$) is a subset of G which is itself a group under the group operation of G. Note that this subgroup must contain the identity element.

The General Linear Group has several important subgroups, which as a family make up the *Classical Matrix Subgroups*.

2.1 The Classical Matrix Subgroups

The Special Linear Group, $\mathcal{SL}(N)$, consists of all members of GL(N) which have determinant 1. To see that this set of matrices forms a group, note that if $A, B \in SL(N)$, then to show that $A * B \in SL(N)$, note that $det(AB) = det(A) \cdot det(B) = 1 \cdot 1 = 1$. Also, for any $A \in SL(N)$, $det(A^{-1}) = [det(A)]^{-1} = [1]^{-1} = 1$, so that every inverse is a member of $\mathcal{SL}(N)$.

The Orthogonal Group, $\mathcal{O}(N)$, consists of all real $N \times N$ matrices with the property that:

$$A^T A = I$$
 for all $A \in \mathcal{O}(N)$

(Note that this relationship and the group properties also implies that for any $A \in \mathcal{O}(N)$, $A A^T = I$ as well). As described in class, the group $\mathcal{O}(N)$ can represent spherical displacements in N-dimensional Euclidean space. To check that $\mathcal{O}(N)$ forms a group, note that:

- The product of two orthogonal matrices is an orthogonal matrix. Let $A, B \in \mathcal{O}(N)$. To check if the product AB is orthogonal, note that: $(AB)^T(AB) = B^T A^T A B = B^T B = I$, and thus the product AB is orthogonal.
- Recall that the inverse of an orthogonal matrix is the same as its transpose: $A^T = A^{-1}$ for all $A \in \mathcal{O}(N)$. Thus, since $A^T A = I$ for othogonal matrices, it is also true that the inverse of A, A^{-1} , is an orthogonal matrix: $[A^{-1}]^T A^{-1} = [A^T]^T A^T = A A^T = I$.

The Special Orthogonal Group, $\mathcal{SO}(N)$, consists of all orthogonal matrices whose determinants have value +1. To show that these matrices form a group, we can immediately apply the results from the analyses of $\mathcal{O}(N)$ and $\mathcal{SL}(N)$ above to further show that the product of matrices in $\mathcal{SO}(N)$ has determinant +1, and that the inverses of all matrices in $\mathcal{SO}(N)$ have determinant +1.

The Unitary Group, $\mathcal{U}(N)$, consists of orthogonal matrices with complex matrix entries: $\mathcal{U}(N) = \mathcal{O}(N, \mathbb{C})$. Note that in this case of complex valued matrices, the matrix transpose operation is replaced by the Hermitian operation (transpose and complex conjugation): $A^* A = I$ for all $A \in \mathcal{U}(N)$, where A^* is the transposed complex conjugate of A.

The Special Unitary Group, SU(N), consists of those unitary matrices with determinant having value +1.

The Special Euclidean Group, $S\mathcal{E}(N)$, consists of all rigid body transformations of *N*-dimensional Euclidean space which preserve the length of vectors (i.e., distances between points). Matrices in $S\mathcal{E}(2)$ describe planar rigid body displacements, while matrices in $S\mathcal{E}(3)$ describe spatial rigid body displacements. Matrices in $S\mathcal{E}(N)$ take the form:

$$\begin{bmatrix} R & d \\ \vec{0}^T & 1 \end{bmatrix}$$

where $R \in \mathcal{SO}(N), \vec{d} \in \mathbb{R}^N$, and the vector $\vec{0}$ is an *N*-vector whose elements are identically zero.

2.2 Some Simple Examples

- $GL(1) = \mathbb{R} \{0\}.$
- $GL(1,\mathbb{C}) = \mathbb{C} \{0\}.$
- $\mathcal{O}(1) = \{1, -1\}.$
- $\mathcal{SO}(1) = \{1\}.$
- $\mathcal{SU}(1) = \{e^{i\theta}\}, \text{ for all } \theta \in \mathbb{R}.$
- $\mathcal{SO}(2) = 2 \times 2$ matrices of the form:

$$\begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix}$$

Note, we say that $\mathcal{SO}(2)$ and SU(1) are *isomorphic* because there is a one-to-one correspondence between every element in the two groups.