
Chapter 1

Wrench Resistant Grasps

Chapter ?? introduced the notion of wrench resistance, a basic property which helps to ensure
grasp security. This notion will be refined in this chapter for the case of rigid body grasps
involving frictional contacts. The frictional grasps studied in this part of the book inherit all
of the c-space geometry from the frictionless contact case, but have the added complexity of
frictional mechanics. The Coulomb friction model constraints are imposed on the co-tangent
space of contact wrenches, and not directly on the c-space geometry. Fortunately, these
constraints can be modeled and analyzed using basic concepts from convex analysis, which
are reviewed in this chapter.

As stated in Chapter 6, a frictional grasp is wrench resistant when any perturbing wrench
applied to the grasped object can be counterbalanced by feasible finger forces lying within
the friction cones at the contacts. Because it is central to this chapter, Definition ?? of
Chapter ?? is repeated here.

Definition 1. Let a rigid body B be held in an equilibrium grasp by k rigid finger bodies
Oi, . . . ,Ok. Let Ci be the friction cone associated with the ith contact. The grasp is said to
be wrench resistant if there exists feasible contact forces, ~f ∈ C1 × · · · × Ck, such that:

G~f + wext = ~0 (1.1)

for all wext ∈ IRm, where G is the grasp map and ~f =
(
f1 · · · fk

)T
is the vector of finger

contact forces.

Definition 1 is intuitively appealing because it directly captures the notions of grasp safety
discussed in Chapter ??. However, it does not lead to practical procedures to test if a given
grasp is wrench resistant. Section 1.1 provides an alternative (but equivalent) theorem on
wrench resistance in terms of internal grasp forces and non-marginal equilibrium grasps. This
reformulation leads to practical tests for wrench resistance. Moreover, it allows the catalog
of equilibrium grasps developed in Chapter ?? to be used to construct wrench resistant
grasps. Section 1.2 develops a general computational test for aribtrary grasps based on the
formulation of the wrench resistibility problem in terms of Linear Matrix Inequalities (LMIs),
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2 CHAPTER 1. WRENCH RESISTANT GRASPS

for which there exist efficient computational algorithms. To illustrate the practical utility of
this chapter’s concepts, the problem of grasp force optimization is formulated as a convex
optimization problem in Section 1.3. Finally, Section ?? analyzes a grasp from the control
system point of view. It will be seen that a wrench resistant grasp is a controllable grasp.

1.1 Wrench Resistance and Internal Forces

We have seen in Chapter 6 that a wrench resistant grasp must be an equilibrium grasp–i.e.,
the equilibrium condition is a necessary condition for wrench resistance. This result will be
extended below to show that a non-marginal equilibrium grasp is a necessary and sufficient
condition for wrench resistance.

Definition 2. Let a rigid body B be held in an equilibrium grasp by frictional rigid bodies
Oi, . . . ,Ok at configuration q0. Let f 0

1 , f 0
2 , · · · , f 0

k denote the equilibrating finger contact
forces. The equilibrium grasp is said to be marginal if one or more of the equilibrating
finger contact forces lie on the boundary of their respective friction cones: f 0

j ∈ bdy(Cj)
for some j ∈ 1, . . . , k. If all equilibrium contact forces lie in the interior of their respective
friction cones, f 0

j ∈ int(Cj) ∀ j = 1, . . . , k, then the grasp is a non-marginal equilibrium
grasp.

The following theorem provides an alternative characterization of wrench resistance that
leads to graphical procedures as well as computational algorithms for assessing a grasp’s
wrench resistance ability. Recall from Chapter ?? that an internal or squeeze force is a finger
contact force, ~fint, lying in the null space of the grasp map, G: G~fint = ~0.

Theorem 1 (Wrench Resistance and Internal Forces). Let a rigid body B be in fric-
tional point contact with k rigid frictional finger bodies O1, . . . ,Ok at equilibrium configura-
tion q0. The grasp (G,C) is wrench resistant iff:

i) The grasp map G : C1 × · · · × Ck → T ∗q0
IRm is surjective (it has full rank m),

ii) There exists an internal force ~fint = [fi, . . . , fk]
T that lies in the interior of the friction

cone C: ~fint ∈ Null(G)∩int(C1×· · ·×Ck). I.e., the grasp is a non-marginal equilibrium
grasp.

Before tackling the proof of this theorem, let us first consider the physical interpretation
of the theorem’s two conditions. To see the necessity of Condition (i), assume that the
grasp map G has rank l, where l < m. In that case, there is a set of net body wrenches that
cannot be counterbalanced by any combination of finger forces, and thus the grasp fails to be
wrench resistant. However, a full rank condition on G is not sufficient by itself to guarantee
wrench resistibility. While it is always possible to find an ~f that solves Equation (1.1) when
G is full rank, the solution is not guaranteed to lie in the set of feasible contact forces,
C = C1 × · · · × Ck. Condition (ii) ensures the feasibility of the contact forces as follows.
Since an internal force produces no net wrench on B, its magnitude can be arbitrarily scaled



1.1. WRENCH RESISTANCE AND INTERNAL FORCES 3

without affecting the equilibrium grasp 1. Assume that there exists a particular contact
force vector, ~fp, that solves Equation (1.1) for a given ~wext, but does not necessarily lie in C.
If there also exists for the given grasp configuration an internal force in the interior of the
friction cone, ~fint ∈ Null(G) ∩ int(C), then as the fingers squeeze along the internal force
subspace, there is a corresponding increase in the normal contact force magnitudes, which
will allow the grasp to support greater feasible tangential force components (see Exercises).

Hence, with sufficient squeezing, the net contact force, ~fnet = ~fp + s∗ ~fint (where s∗ is a
sufficiently large scaling of the feasible internal force) is guaranteed to lie in C.
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Figure 1.1: (a) A two-finger frictional grasp of an ellipse with physically unrealizable tan-
gential reaction forces applied at each finger. (b) As the internal forces are increased, the
net reaction force (combining internal force and tangential force) eventually lies withing the
friction cone, and is therefore feasible.

Example: An example of this construction is depicted in Figure 1.1 for a frictional two-
fingered antipodal grasp of an ellipse. Assume that the grasp is initially in equilibrium
without any external forces applied to the ellipse. Next, a perturbing force of magnitude
M is applied along the y-axis, which is orthogonal to the normals of both finger contacts.
A particular solution to Equation (1.1) in this case is for each finger to apply a force of
magnitude M/2 along the tangents to each contact, so as to oppose the perturbing force.
However, a pure tangential force is not feasible with the Coulomb friction constraint. But,
this grasp possesses a 1-dimensional space of internal forces that physically corresponds to
equal magnitude squeezes by each finger along their respective normals. As the squeezing
increases, more and more tangential forces, which are needed to counterbalance the per-
turbing wrench, can be supported by the frictional contact. At a sufficiently large normal
force (i.e., fn ≥ M/(2µ)), the contacts can support the tangential forces that are needed to
counterbalance this particular perturbing wrench. Theorem 1 confirms that such a squeezing
can be found for any perturbing wrench.

Based on this discussion, Theorem 1 is proven as follows.

1Clearly there are practical limits to the magnitude of forces that can be applied before mechanism
actuator limits are reached or plastic material deformations are experienced. These practical issues are
ignored for now.
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Proof: To prove the sufficiency of Theorem 1, consider an arbitrary wrench, wext ∈ T ∗q0
IRm,

perturbing the grasped object B when it is held by frictional contacts Let ~fp be any particular

contact force vector that solves Equation (1.1) for wext; ~fp need not be feasible. If G is

surjective, then at least one such contact force, ~fp, always exists. If there exists ~fint ∈
Null(G) ∩ int(C), then the net contact force ~fnet = ~fp + s~fint is also a solution to Equation

(1.1) for any s ∈ IR. We now need to show that there exists a value of s such that ~fnet ∈ C.
First note that

lim
s→∞

~fp + s~fint

s
= ~fint ∈ int(C) .

Thus, there exists a sufficiently large value of the scalar s, denoted by smin, such that

~fp + smin
~fint

smin

∈ int(C) . (1.2)

Since the set of feasible forces, C, is a cone2, if ~fp and ~fint satisfy Equation (1.2), then it
must be true that:

~fp + smin
~fint ∈ int(C) .

Hence, ~fnet = ~fp + s~fint is a feasible solution of Equation (1.1) for all s ≥ smin.

To show the necessity of the two conditions of Theorem 1, assume that (G,C) is a wrench
resistant grasp. The necessity of G’s surjectivity was discussed above. To show the necessity
of Condition (ii), let ~f1 ∈ int(C) be a feasible solution of Equation (1.1): G~f1 = −wext.

Let ~f2 ∈ int(C) be a different feasible solution to Equation (1.1): G~f2 = −wext (the

construction of ~fnet above ensures that there is more than one feasible solution to Equation
(1.1)). Hence, ~fN = ~f1 − ~f2 lies in Null(G), since G(~f1 − ~f2) = −wext + wext = 0. Because

int(C) is a convex cone, ~fN ∈ int(C). Thus, there exists a least one internal force, ~fN , that
lies in int(C). �

Wrench resistance requires the grasp mapG to be surjective. The following proposition shows
that frictional grasps having a minimal number of fingers and a nondegenerate arrangement
of the contacts will indeed have a surjective grasp map. The proof is derived in the Exercises.

Proposition 1.1.1. Let k ≥ 2 planar fingers bodies make frictional point contact with a
planar rigid body B. The grasp map G is full rank unless all finger contacts are coincident.
Similarly, let k ≥ 3 finger bodies make point with a 3-dimensional rigid body B at point
contacts whose contact forces are governed by the Coulomb friction law. The grasp map G
is full rank unless all finger contacts lie along a common line. Finally, let k ≥ 2 soft fingers
contact a 3-dimensional object. The grasp map is full rank kunless all of the finger contacts
are coincident.

Examples of Frictional Wrench Resistant Grasps. Because every wrench resistant
grasp must also be a non-marginal equilibrium grasp, the catalog of equilibrium grasps
developed in chapter ?? can be used to construct wrench resistant grasps for a given object.

2If ~f1, ~f2 ∈ Cp, where Cp is a cone, then a1
~f1 + a2

~f2 ∈ Cp for all a1, a2 ∈ IR+.
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1. 2 point contact of ellipse.

2. Three point contact of convex body.

1.2 Wrench-Resistance as a Linear Matrix Inequality

Using Theorem 1 and its corollary, the wrench resistibility of many simple grasps can be
resolved with simple analyses. Moreover, many (but not all!) wrench resistant grasps of a
given object can be constructed from the equilibrium grasp catalog in Chapter ??. However,
a computational procedure is generally required to assess the wrench resistibility of an arbi-
trary frictional grasp. Any such algorithm must apply to general grasp geometries and also
have computational efficiency. This section shows how the problem of assessing the wrench
resistance of a given grasp can be converted into a Linear Matrix Inequality (LMI) problem,
for which there are efficient computational procedures.

1.2.1 Reformulating Friction Constraints in terms of Positive Def-
inite Symmetric Matrices

The practical computational difficulty of determining the resistibility of a complex frictional
grasp arises from the cone-like nature of the feasible contact force constraints. Fortunately,
these constraints can be reformulated to take advantage of advances in convex analysis.
Consider a hard point contact with Coulomb friction. The contact force can be described

as f =
(
fx fy fn

)T
where fn is the normal contact force and fx, fy are the components of

the contact force tangent to the surface. Recall that the contact forces are constrained:

fn ≥ 0; =
√
f 2

x + f 2
y ≤ µfn (1.3)

where µ is the Coulomb friction coefficient. These contraints can be equivalently expressed
as follows.

Proposition 1.2.1. Let a rigid finger body O be in frictional point contact with rigid object

B. Let f =
(
fx fy fn

)T
denote the finger contact force and let µ denote the Coulomb

friction coefficient. Let P (f) be the following symmetric matrix:

P (~f) =

µfn 0 fx

0 µfn fy

fx fy µfn

 . (1.4)

The feasible contact forces constraints in Equation (1.3) can be equivalently expressed as:

P (~f) � 0 (1.5)

where A � 0 denotes that the NA × NA matrix A is positive semi-definite 3, i.e., that
~uTA~u ≥ 0 for all ~u ∈ IRNA.

3The relation A � 0 denotes that matrix A is strictly positive definite, i.e. ~uT A~u > 0 for all ~u ∈ IRNA .
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Proof: Because P (~f) is a real symmetric matrix, its eigenvalues are real. Let λ1, λ2, and

λ3 denote the three eigenvalues of P (~f). For the 3 × 3 matrix to be positive semidefinite,

λ1, λ2, λ3 ≥ 0. The eigenvalues of the matrix P (~f) in Equation (1.4) are

λ1 = µfn (1.6)

λ2 = µfn −
√
f 2

x + f 2
y (1.7)

λ3 = µfn +
√
f 2

x + f 2
y . (1.8)

Thus, a necessary conition for matrix P (~f) in Equation (1.4) to be positive semidefinite is
that λ1 ≥ 0, which implies that fn ≥ 0. Since fn ≥ 0, the eigenvalue λ3 is automatically
positive semidefinite. Consequently, P (~f) will be positive semidefinite if λ2 ≥ 0, which
implies that µfn ≥

√
f 2

x + f 2
y , which verifies the proposition. �

We will see below that the matrix inequality constraint (1.4) can be constructed in a prin-
cipled way from the theory of Linear Matrix Inequalities. Further note that the constraints
imposed by some other common frictional contact models can also be expressed as symmetric
semi-definite matrices (see the Exercises for one example). Trivially, for frictionless point

contact, P (~f), is described by a scalar, P (~f) = fn.

The constraint matrix P (~f) in Equation (1.4) is linear in the finger contact force compo-
nents, and hence it can be factored into a simple linear sum whose coefficients are constant
symmetric matrices:

P (~f) =

µfn 0 fx

0 µfn fy

fx fy µfn

 = fx

0 0 1
0 0 0
1 0 0

 + fy

0 0 0
0 0 1
0 1 0

 + fn

µ 0 0
0 µ 0
0 0 µ


= fxSx + fySy + fnSn .

The symmetric constraint matrices for some other frictional models, such as the elliptic
approximation of the soft contact model (see Exercises) are similarly linear in the contact
forces, and therefore several of practical rigid body frictional contact models can be put in
the form:

P (~f) =

mi∑
j=1

fjSj � 0 (1.9)

where fj is the jth component of themi-dimensional finger force vector ~f =
(
f1 f2 · · · fmi

)T
,

and Sj is the associated constant symmetric matrix. Equation (1.9) is a Linear Matrix In-
equality (LMI).

Definition 3. A Linear Matrix Inequality (LMI) in the variable ~x ∈ IRN takes the form:

Q(~x) , Q0 +
N∑

i=1

xiQi � 0 (1.10)

where Q0, Q1, · · · , QN are constant symmetric N ×N matrices and xi is the ith entry of the
N-vector ~x. The inequality (1.10) is said to be non-strict: ~uTQ(x)~u ≥ 0 for all ~u ∈ IRN .
Similarly, a strict LMI has the form Q(~x) � 0: ~uTQ(x)~u > 0 for all ~u ∈ IRN .
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Linear matrix inequalities can be used to represent a wide variety of constraints, including
linear constraints, quadratic constraints, convex constraints, and matrix norm inequalities.

Example: A constraint of the form

||A~x+~b|| ≤ ~cT~x+ d (1.11)

is termed a second order cone constraint. This constraint can equivalently be expressed as
an LMI:

||A~x+~b|| ≤ ~cT~x+ ~d ⇐⇒

[
(~cT~x+ ~d)I A~x+~b

(A~x+~b)T (~cT~x+ ~d)I

]
� 0 (1.12)

where ~x ∈ IRNx , A ∈ IRNA×Nx , I is the NA×NA identity matrix, ~c ∈ IRNx , and d ∈ IR. Note
that constraints (1.3) can be reformulated to (1.4) using this correspondence (see Exercises).

From the computational point of view, there are two main types of LMI problems:

Definition 4. The LMI feasibility problem tests for the existence of an ~x such that
Q(~x) � 0, or Q(~x) � 0. The LMI optimization problem minimizes a convex cost fuction
c(~x) over all admissible ~x that satisfy Q(~x) � 0 or Q(~x) � 0.

In addition to the wrench resistance problems discussed in this chapter, many problems in
control, estimation, and optimization can be formulated in terms of LMIs and their associated
feasibility and optimization algorithms. Efficient algorithms (e.g., interior point methods)
have been developed to solve several classes of LMI problems, and powerful software tools
are ready available. The remainder of this section will show how the resistability of a grasp
can be tested using an efficient LMI formulation.

The ensemble of friction cone constraints for all k fingers can be represented as a symmetric
block-diagonal matrix, where the ith matrix block is determined by the ith friction cone
constraint matrix:

P(~f) = Blockdiag(P (f1), P (f2), · · · , P (fk)) � 0 . (1.13)

where ~fi is the ith finger force and ~f is the vector of all contact forces: ~f =
(
~f1 · · · ~fk

)T

.

Let fi,j denote the jth component of the ith finger force. Similarly, let Si,j denote the constant
symmetric matrix associated with fi,j in Equation (1.9). Then (1.13) can be represented as
an LMI:

P(~f) =
Nc∑
l=1

flSl � 0 (1.14)

where the index l is short-hand notation for the double index over fingers and contact force
dimension:

l(i, j) = (i− 1)n+ j,

with n = 2 or n = 3 denoting the dimension of the finger contact force vector. Hence,
Nc = kn. The matrix Sl denotes the block-diagonal constant symmetric matrix:

Sl = BlockDiag(0, . . . , 0, Si,j, 0, . . . , 0).
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Theorem 1 can be converted to standard LMI feasibility problem. The theorem has two
basic conditions: (i) the grasp map G is surjective, (ii) there exists a grasp force ~fint ∈
Null(G) ∩ int(C). Condition (i) remains unchanged. Condition (ii) can be restated in the

language of LMIs as: there exists ~f ∈ Null(G) such that P(~f) � 0. The second condition
can be further adapted to the LMI framework. Let V denote a matrix whose columns are a
basis for (Nc −m)-dimensional null space of G. Thus, all null vectors can be expressed as:

Null(G) = V ~z, ~z ∈ IR(Nc−m).

Thus, Condition (ii) can be stated as a single LMI by reparametrizing Equation (1.14) in
the basis V :

P̃(~z) =
Nc−m∑
j=1

zjS̃j � 0 . (1.15)

where

S̃j =
∑

l

Vl,jSl. (1.16)

and Vl,j is the (l, j) element of matrix V .

Proposition 1.2.2 (LMI Wrench Resistance Test). A rigid body grasp of B by k rigid finger
bodies is wrench resistant if and only if

(i) The grasp map G is surjective (or full rank),

(ii
′
) There exists ~z ∈ IRNc−m such that P̃(~z) � 0, where P̃(~z) is given by Equation (??).

Proposition 1.2.2 shows that the problem of testing for wrench resistability leads to an
LMI feasibility test, as one only seeks the existance of at least one vector ~z that satisfies
Condition (ii

′
). The LMI feasibility problem can be reformulated as an LMI optimization

problem using a standard approach. In this way, the powerful computational codes that
have been developed for LMI optimization can be leveraged. First we make the observation
that a non-strict symmetric LMI, Q(~x) � 0, is satisfied if and only if there exists a negative
semi-definite scalar, η, such that Q(~x) + ηI � 0 (see Exercises). I.e.,

Q(~x) � 0 ⇐⇒ ∃ η ≤ 0 such that Q(~x) + ηI � 0 . (1.17)

Consequently, Condition (ii
′
) in Proposition 1.2.2 can be restated as:

minimize { η } subject to : P̃(~z) + η I � 0.

The LMI is feasible (and hence there exists an internal force satisfying Condition (ii) of
Theorem 1) if and only if the optimal value, η∗, of the LMI minimization problem is negative.
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1.3 Grasp Force Optimization

The convex analysis concepts introduced in this chapter are useful for more than the prob-
lem of testing a given grasp’s wrench resistability. This section formulates the grasp force
optimization problem to show the practical utility of this chapter’s brief review of convex
analysis.

Suppose a multi-fingered robotic hand must apply a specified net wrench, wnet to a grasped
object using a specific set of contact locations. Recall that the net wrench is the image of(
f1 · · · fk

)
∈ C1 × · · · × Ck under the action of the grasp map G. Generally, there

will not be a unique set of contact forces which are mapped through the grasp map to the
desired object wrench. The goal of a grasp force optimization procedure is to select the
contact forces which meet the task objective while simultaneously optimizing an additional
criterion.

Definition 5 (Grasp Force Optimization Problem). Let (G,C) model the grasp of a rigid
object B by k rigid frictional finger bodies at specific contact points x1, . . . , xk. The grasp
force optimization problem seeks to minimize a cost, h(~f), while satisfying the grasping
constraints:

min { h(~f) }
subject to : ~f ∈ C1 × · · · × Ck, and

G~f + ~wext = 0 .

In particular, if the cost-function is a convex function of the contact forces, then the grasp
optimization problem becomes a convex optimization problem:

Definition 6 (Convex Optimization). Let ~x ∈ IRn be an optimization variable. A convex
minimization problem is of the form:

min
~x

{ h(~x) }

subject to g(~x) ≥ ~0
A~x+~b = 0

where h(~x) : IRn → IR is a convex function, the mc inequality constraint functions g(~x) :
IRn → IRmc are assumed to be convex functions, and the matrix A ∈ IRl×p and the vector
~b ∈ IRl in the affine equality constraint are constants.

Convex optimization problems are efficiently solvable and yield a unique optimum solution.
Powerful and general convex optimization toolkits are readily available. The general class
of convex optimization problems includes many special versions that are relevant to grasp
force optimization:

1. In a Second Order Cone Program (SOCP), the cost function takes the form h(~x) = ~uT~x,

with ~u a constant vector. The mc inequality constraints take the form ||Ai~x +~bi|| ≤
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cTi ~x + di for i = 1, . . . ,mc, where Ai ∈ IR(ni−1)×n, ~b ∈ IRni−1, ~ci ∈ IRn, di ∈ IR.

where the constraint ||Ai~x +~bi|| ≤ cTi ~x + di defines a second-order cone. Friction
constraints, when formulated in the manner of Equation (1.3), are second-order cone
constraints.

2. In the dual-form, a Semi-Definite Program (SDP) takes the form of Definition 6
with the cost function taking the form h(~x) = ~uT~x, while the inequality constraints
take the form of a linear matrix inequality: S0 +

∑n
i=1 xiSi � 0, where S0, · · · , Sk are

positive semi-definite constant symmetric matrices.

There are a variety of grasp optimization criteria that are both physically meaningful and
convex. While this book attempts to provide the fundamental principles underlying all
well-posed criteria, it is useful to put this formulation in a concrete context.

• The gentlest grasp criterion. The potential for the gripper to damage the grasped
object is proportional to the magnitudes of the normal forces at the contacts. Hence,
the gentlest grasp will minimize the worst case normal force applied at any of the active
contacts. This goal can be expressed as the following optimization problem.

min { ξ }
subject to : f j

n ≤ ξ; ~f ∈ C1 × · · · × Ck; G~f + ~wext = 0 .

where ξ ∈ IR andd ~f ∈ C1 × · · · × Ck is short hand notation for the friction cone
constraint, which may be formulated as a second-order cone constraint (and therefore
may be solved using specialized SOCP algorithms), or as a linear matrix inequality
constraint (which can be solved using SDP algorithms).

• The robust grasp criterion. The minimization of the contact normal forces in the
gentlest grasp optimization solution may push the contact forces toward the edge of
the friction cones. Such a solution is non-robust because it is not resiliant in the face
of the realistically uncertain value of the friction coefficient. Alternatively, one would
like to minimize the normal force without relying too much on the tangential frictional
forces. This can be accomplished by adding a penality term (or barrier function) to
the cost function in order to bias the contact force vectors toward the center of the
friction cone, thereby minimizing the optimal grasp’s reliance on friction. A natural
barrier function in this case is log(det(P(~f))), where P is the symmetric semi-definite
matrix in Equation (1.14) modeling the friction cone constraints. The magnitude of
this convex barrier function approaches infinity as the contact force vector veers toward
the edge of the friction cone (see Exercises). Thus, this barrier function allows for a
convex programming formulation:

min
ξ

{ ξ − log(det(P(~f))) }

subject to : ~f ∈ C; f j
n ≤ ξ; G~f + ~wext = 0 .



1.4. GRASP CONTROLLABILITY 11

• The smallest sum of normal forces criterion. Instead of minimizing the worst
case normal force, one may alternatively seek to minimize the sum of the normal forces.
Note that this sum can be expressed as ~uT ~f where the vector ~u has the form ~u =(
0 0 1 0 0 1 · · · 0 0 1

)T
for the example of a hard frictional point contact.

Hence, the minimization of the sum of forces takes exactly the form of a Second Order
Cone Program (SOCP). Similarly, the sum of squared normal forces,

∑k
i=1 f 2

i , or

the squared Euclidean norm of the finger force vector,
∑k

i=1 ||fi||2, are both convex
functions, and allow for a convex optimization framework.

1.4 Grasp Controllability

This section will analyze a multi-fingered robotic grasp of a rigid body as a control system,
and particularly consider the notion of grasp controllability. Practically speaking, a grasp
is controllable if a set of feasible finger forces (which constitute the system controls) can be
used to move the grasped object from a starting configuration to an arbitrary desired final
configuration. Importantly, when an equilibrium grasp is disturbed by some external action,
a feedback control algorithm can restore the object to its original equilibrium state if the
grasp is controllable. Not surprisingly, it will be shown that wrench resistability is a sufficient
condition for grasp controllability. Interestingly, we will also see that controllability can be
achieved without the wrench resistant grasp condition.

Dynamics of a Grasped Object. To model a grasp as a control system, we must develop
the dynamical equations which govern the grasped object’s motions under the influence of
the finger contact forces. Assume that a rigid object B is grasped by k fingers, O1, · · · ,Ok.
For simplicity, the fingers are assumed to be massless point finger bodies that apply contact
forces f1, . . . , fk to the object at given contact locations ~x1, . . . , ~xk. Furthermore, we assume
that as long as the fingers apply feasible forces, fi ∈ Ci for all i = 1, . . . , k, then the finger
contact points stay fixed on the object’s surface, and in fact wil move in concert with the
object. In the following analysis, a body fixed reference frame, B, is located so that its origin
lies at the object’s center of mass. An inertially fixed world reference frame, denoted by
S, is located so that it coincides with B when B lies at its initial equilibrium configuration.
Without loss of generality, assume that the z-axis of the inertial reference frame is antiparallel
to the direction of gravity.

In the fixed inertial coordinates, the motion of rigid body B under the influence of external
forces and torques is governed by the Newton-Euler dynamical equations:

mB ~̈pcm = ~Fext (1.18)

IS ~̇ωS + ~ωS × IS ~ωS = ~τext (1.19)

where ~Fext and ~τ are the external force and torque applied to B (with respect to its center
of mass, as described in bases parallel to S), mB is the mass of B, ~pcm is the location of B’s
center of mass with respect to the origin of frame S, ~ωS is B’s angular velocity as measured
in the interial frame S, and IS is B’s inertia tensor in the inertial frame: IS = RSB IB RT

SB,
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where IB is the constant intertia tensor in the body fixed frame B, and RSB ∈ SO(3) is the
relative orientation of frame B with respect to frame S.

For a rigid body grasp, the external forces on the object will consist of the finger contact
forces as well as the force of gravity. Recall that net wrench on the object due to the finger

forces is wext = G(q)~f , where G is the grasp map and ~f =
[
f1 f2 · · · fk

]T
. Substituting

the finger contact forces into Equations (1.18) and (1.19), and adding in the gravitational
effects, the equations of motion are:[
mBI 0

0 IS(q)

] [
~̈p
ω̇S

]
+

[
0

~ωS × IS(q) ~ωS

]
=

[
RSB(q) 0

0 RSB(q)

]
G(q)~f −mBg∇h(q) (1.20)

where h(q) is the height of B’s center of mass relative to a reference plane and g is the
gravitational constant.

Equation (1.20) represents a second order nonlinear mechanical system with the general
form:

M(q)q̈ + B(q, q̇) + G(q) = GS(q)~f (1.21)

where

M(q) =

[
mBI 0

0 IS(q)

]
B(q, q̇) =

[
0

~ωS × IS(q) ~ωS

]
(1.22)

G(q) = mB g ∇h(q) GS(q) =

[
RSB(q) 0

0 RSB(q)

]
G(q) . (1.23)

The matrix M(q) is the mass matix, while vectors B(q, q̇) and G(q) respectively represent
the Coriolis and gravity forces acting on the system.

Controllability. For control analysis, it is useful to transform system (1.21) to first-order

form by introducing the state z =
(
q q̇

)T
and rearranging terms:

ż =

[
0 I
0 0

]
z −

[
0

M−1(z)(B(z) + G(z))

]
+

[
0

M−1(z)GS(z)

]
~f . (1.24)

Equation (1.24) takes the general form of a nonlinear affine control system:

ż = a(z) + b(z)~u (1.25)

where ~u ∈ IRp is the vector of p distinct control inputs, and z ∈ IRN (where N = 2m for
the grasping system under consideration). The control inputs may be restricted: ~u ∈ U ,
for some U ⊂ IRp.

The system (1.25) is controllable if for any z0, zf ∈ IRN , there exists a time, T > 0, and a
feasible control input u : [0, T ]→ U such that z(t0) = z0 and z(t = T ) = zf . I.e., the system
can be steered in finite time from its initial state to a desired final state using only allowable
controls in U . In general, controllability of the type described in this definition can be hard
to assess for all initial and final configurations. Hence, we will be satisfied with small time
local controllability.
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Definition 7 (Reachable Set). let V ⊂ IRN be an open set. The reachable set at time
T , RV (z0, T ) of control system (1.25) is the set of all states {z(T )} such that there exists
an admissible control u : [0, T ] → U that steers the control system (1.25) from z(0) = z0 to
z(T ) = zf while satisfying z(t) ∈ V for all t ∈ [0, T ]. More generally, let the set of states
reachable up to time T be defined as:

RV (x)(z0,≤ T ) =
⋃

τ ∈ [0,T ]

RV (z0, τ) .

Definition 8 (Small Time Local Controllability, STLC). The control system (1.25) is
small-time locally controllable at z0 if RV (z0,≤ T ) contains a neighborhood of z0 for all
choices of V and for some T > 0.

In other words, a control system will be small time locally controllable (STLC) at state z0

if it can be steered in finite time to any nearby state in a neighborhood of z0 with feasible
controls.

Let us return to the grasping situation. If the grasp is wrench resistant, then recall that the
grasp map G is a full rank matrix, and the image of the set of feasible fingers forces under
the action of G spans the entire wrench space: G(C) = IRm. Thus, Equation (1.21) takes
the form of a fully actuated second order mechanical system:

M(q)q̈ + B(q, q̇) + G(q) = ~u (1.26)

where the control inputs ~u represent the wrenches that can be generated by the finger
contacts, and we know that the wrenches (control inputs) span T ∗q0

IRm in the wrench resistant
case. We say that system (1.26) is fully actuated when dim(q) = dim(~u)– when there are
as many distinct control inputs as their are independent configuration variables. It is a well
established fact that a second-order fully actuated mechanical system is STLC about an
equilibrium configuration.

Proposition 1.4.1 (Controllability of Wrench Resistant Grasps). Let a rigid object
B be grasped by k rigid finger bodies. If the grasp is wrench resistant, then the grasp is small
time locally controllable about its equilibrium configuration.

Constructing a Feedback Controller. Unfortunately, controllability analysis only deter-
mines if grasp can be controlled, but does not specify a control feedback structure which will
ensure that the controllability condition is exploited. There are several feedback procedures
which can realize a practical grasp controller.

A natural choice is feedback linearization (known as the computed torque method in robotics).
If a grasp is wrench resistant, the finger contact forces can be chosen so that

GS(q)~f = M(q)(q̇d −Kvė−Kpe) + B(q, q̇) + G(q) (1.27)

where qd is the desired configuration of the grasped object (e.g., the equilibrium configura-
tion), e = q − qd, ė − q̇ − q̇d, and Kv and Kp are positive definite feedback gain matrices.
Substituting (1.27) into Equation (1.21) results in the equation

M(q)(ë + Kvė + Kpe) = 0 .
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Since the mass matrix M(q) is positive semi definite, this equation is equivalent to:

ë + Kvė + Kpe = 0 .

Thus, the error dynamics take the form of a 2nd order linear constant coefficient ordinary
differential equation. The matricesKp andKv can be chosen to implement a desired feedback
control behavior (e.g., a specified rise time or overshoot)

Controllable Grasps Need not be Wrench Resistant. While a wrench resistant grasp
is a controllable, the converse need not be true. To illustrate this point, we must reanalyze
Equation (1.24) in the case when the grasp is not wrench resistant, and therefore it can
no longer be considered a fully actuated control system. In general, one must apply non-
linear controllability theory to assess the general conditions under which system (1.24) is
controllable. However, a linearized analysis will suffice for the current discussion. If the
linearized system is linearly controllable at the point of linearization, then it is also nonlinearly
controllable in a small neighborhood of that point.

Let us linearize (1.24) about the equilibrium point, z0 = (q0,~0). Without loss of generality,
choose a c-space parametrization so that q0 = ~0. Generally, a non-linear control systems of
the form ż = p(z, u) can be linearized about the operating conditions (z0,u0) as follows:

p(z, u) = p(z0, u0) +
∂p(z, u)

∂z

∣∣∣∣
z0,u0

(z − z0) +
∂p(z, u)

∂u

∣∣∣∣
z0,u0

(u− u0) . (1.28)

Substituting (1.25) and (1.24) into this equation yields the following linearized equations

˙̃z =

[
0 I
Ac 0

]
z̃ +

[
0
Bc

]
f̃ , A z + B f̃ (1.29)

where f̃ is to be understood as the perturbation of the finger contact forces about the
equilibrium force values, and z̃ is understood to be the deviation from the equilibrium state.
Note that since we are linearizing about the non-zero equilibrating finger forces, f̃ is not
restricted to the friction cone. The matrices Ac and Bc have the form

Ac =

[
0 Q
0 0

]
Bc = M−1(q0)G

S(q0)

where matrix Q is a 3× 3 skew symmetric matrix:

Q =
∂

∂θ
RSB(θ)~ez

with θ a parametrization of SO(3), and ~ez =
(
0 0 1

)T
.

A linear control system of the form (1.29) is controllable if the following controllability matrix
has full rank

C =
[
B AB A2B · · · AN−1B

]
. (1.30)
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where A ∈ IRN×N , and N = 6 for planar grasps and N = 12 for 3-dimensional grasps..
Substituting (1.29) into (1.30) yields (for a 3-dimensional grasp)

C =

[
0 Bc 0 AcBc 0 A2

cBc 0 A3
cBc 0 A4

cBc 0 A5
cBc

Bc 0 AcBc 0 A2
cBc 0 A3

cBc 0 A4
cBc 0 A5

cBc 0

]
(1.31)

The controllability matrix (1.31) is clearly full rank if Bc is full rank. Since matrix M(q)
is symmetric positive definite (and therefore full rank), the rank of Bc depends solely upon
the rank of GS(q). If the grasp is wrench resistant, then GS is full rank, and hence the grasp
is controllable, confirming Proposition 1.4.1. However, if Bc is not full rank (and hence the
grasp is not wrench resistant), the grasp may still be controllable. A sufficient condition for
controllability is

rank
[
Bc AcBc

]
= m. (1.32)

Before proceeding to analyze (1.32) in detail, note that if GS is not full rank (implying that
Bc is not full rnak), condition (1.32) may still satisfied if the subspace of IRm not spanned by
GS is spanned by terms in AcBc. Practically speaking, gravitational effects can contribute
to grasp controllability, as the force of gravity in effect acts as an additional “virtual” finger
force on the object.

To analyze (1.32) in more detail, we must expand the matrices Ac and Bc. Note that:

GS(q0) =

[
RSB(θ0) 0

0 RSB(θ0)

]
G ,

[
RSB(θ0) 0

0 RSB(θ0)

]← GF →
. . . . . . . . .
← Gτ →

 =

[
RSB(θ0)GF

RSB(θ0)Gτ

]
.

I.e., the grasp map G has been divided into sub-matrices GF and Gτ that respectively govern
the net force and net torque on the grasped object. Using this division, the expressions for
Ac and Bc in (1.32) can be refined:

[
Bc AcBc

]
=

[
m−1

B RSB(θ0)Gf QIS(θ0)RSB(θ0)Gτ

IS(θ0)RSB(θ0)Gτ 0

]
. (1.33)

Because RSB and IS are full rank matrices, grasp controllability requires that Gτ have rank
3, and that the matrix

[
m−1

B RSB(θ0)Gf QIS(θ0)RSB(θ0)Gτ

]
have rank 3. The full rank

condition will be satisified excpet for the following cases:

• the grasp consists of two hard point contacts whose connecting line passes through the
center of mass

• the grasp consists of three or more hard point contacts which all lie on a line passing
through the center of mass

• the grasp consists of three or more hard point contacts, and the vectors from the center
of mass to each contact point is orthogonal to the direction of gravity.
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1.5 Exercises

Problem #1: Using Equation (1.11), show that the hard point contact Coulomb friction
contact model of Equation (1.3) is equivalent to the Linear Matrix Inequality of Equations
(1.4) and (1.5).

Problem #2: A “soft” contact model between a compliant finger tip and a compliant or
rigid grasped object can be approximated within the rigid body point contact framework.
Such a deformable contact can support not only tangential contact forces due to Coulomb
friction, but also a torque about the normal to the contact. One particular model that
captures such a finger contact is the elliptical approximation of the soft contact model. This
model is defined by the following contact force constraints

fn ≥ 0;
1

µ2
(f 2

x + f 2
y ) +

1

γ2
i

τ 2 ≤ f 2
n. (1.34)

where fn is the contact normal force, fx and fy are the tangental contact forces, τn is the
torque about the contact normal. In addition to the standard Co Coulomb friction coefficient,
µ, the Coulomb torsional coefficient, γ, describes the limit on the torsional forces that can
be supported by the contact.

Show that the constraints in Equation (1.34) are equivalent to the following matrix con-
straint:

P (~fi) =


fn 0 0 µ−1fx

0 fn 0 µ−1fy

0 0 fn γ−1τn
µ−1fx µ−1fy γ−1τn fn

 � 0 . (1.35)

Problem #3: Provide the missing proof of Proposition 1.1.1, which states that the Grasp
map associated to a frictional hard finger contact grasp is full rank unless:

• all planar fingers contacts lie at the same point

• three or more 3-dimensional finger contact points lie on the same line.

Problem #4: Prove that Equation (1.17) equivalently formulates the LMI feasibility test.

Problem #5: For the case of frictional point contact, show that the barrier function
log(det(P(~f))) is convex, and that its magnitude tends to infinity as the contact force ap-
proaches the friction cone boundary.

Problem #6: Prove the following proposition.

Proposition 1.5.1. Let a rigid object B be grasped by k rigid frictional finger bodies O1, · · · ,Ok

at a configuration q0. Let ~fint ∈ Null(G) ∩ int(C) be an internal force, where G is the

grasp map and C = C1 × · · · × Ck is the set of friction cones. Let ~fnet = ~fp + s~fint, where
s ∈ IR+. The magnitude of the normal force at each active contact increases in proportion
to the squeezing effort s.
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1.6 Bibliographical Notes

As discussed in the bibliographical notes of Chapter 6, the notion of wrench resistability (or
force closure) has a long history. The key results in this chapter were developed in the 1990’s.
Theorem 1 and its proof is due to Murray, Li, and Sastry [3]. The first formal definition
of grasp analysis in terms of convex programs dates to Kerr and Roth [8] who formulated
the force closure feasibility problem using approximated friction cone constraints in order
to get a Linear Programming formulation. Using similar approximations, and Cheng and
Orin [7] developed a Linear Programming formulation of the grasp optimization problem.
The reformulation of the friction cone constraints as matrix inequalities started with Martin
Buss and coworkers [5, 6], who were interested in the grasp force optimization problem.
Han, Li and Trinkle [2] were the first to recognize that problems of force closure could be
addressed within the Linear Matrix Inequality framework. The formulation of the grasp
optimization problem as a second order cone programming problem is due to Lobo et. al [4],
who were themselves motivated by Buss’ earlier work. Han, Li and Trinkle extended their
formulation to include more complex cost functions and barrier functions. Brook, Shoham,
and Dayan [9] were the first to develop the relationship between grasp controllability and
wrench resistibility.

1.7 Solutions to the Exercises

Solution #1: The terms in Equation (??) can be equated to the terms of (1.3):

A =

[
1 0 0
0 1 0

]
~b = ~0 ~c =

0
0
1

 d = 0 .

Substitution of these terms in 1.11 yields the formula (??).

Solution #2: The determinant of the matrix in Equation (1.35) is:

det


fn 0 0 µ−1fx

0 fn 0 µ−1fy

0 0 fn γ−1τn
µ−1fx µ−1fy γ−1τn fn

 = f 2
n

[
f 2

n −
τ 2
n

γ2
− 1

µ2
(f 2

x + f 2
y )

]
. (1.36)

For this determinant to be positive semidefinite,

f 2
n ≥ 0 and

τ 2
n

γ2
+

1

µ2
(f 2

x + f 2
y ) ≤ f 2

n,

which accurately recovers the constraint between the normal force and the tangential and
torsional contact forces. The eignenvalues of matrix (1.36) are the roots of the characteristic
equation:

(λ− fn)2(λ2 − 2λfn + (f 2
n − ψ2))
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where ψ2 = τ 2/γ2 + (f 2
x + f 2

y )/mu2. For the eigenvalues to be positive semi-definite, fn ≥ 0,
which completes the verification.

Moreover, for all

Solution #3: To show that a k-fingered planar grasp involving 2 or more non-coincident

frictional point contacts has a full rank grasp map, let zi =
[
xi yi

]T
and zj =

[
xj yj

]T

denote the locations of the contacts of fingers i and j, where i, j ∈ 1, . . . , k. Without loss
of generality, assign a fixed reference frame with origin at point xi and with the unit x-axis
pointing from xi to xj. In this coordinate system, the portion of the grasp map associate
with these two contacts is:

[
GiGj

]
=

1 0 1 0
0 1 0 1
0 0 0 (xj − xi)

 (1.37)

where Gi and Gu are the portions of the grasp map associated with contacts i and j. Clearly,
this map is full rank as long as xi 6= xj, i.e., as long as the contacts are not concident. Adding
additional contacts into the grasp map analysis will not change the rank of G.

The proof for a k-fingered frictional spatial grasps is similar. Let pi =
[
xi yi zi

]
and Let

pj =
[
xj yj zj

]
be the locations of two point contacts. Assigned a reference frame with

origin at contact point pi, and with x-basis vector pointing from pi to pj. Orient the y- and
z- basis vectors of the reference frame and the ith finger contact frame to be parallel. The
basis vectors of the jth finger’s contact frame do not necessarily align with this reference
frame. However, since the contact forces allowed under the hard frictional point contact
model span all three Cartesian directions, without loss of generality one can assign a basis
for these forces which aligns with the reference frame. Hence, with these choices of bases,
the portion of the grasp map associated these two contacts is:

G =
[
· · · Gi · · · Gj · · ·

]
=


· · · 1 0 0 · · · 1 0 0 · · ·
· · · 0 1 0 · · · 0 1 0 · · ·
· · · 0 0 1 · · · 0 0 1 · · ·
· · · 0 0 0 · · · 0 0 0 · · ·
· · · 0 0 0 · · · 0 0 (xi − xj) · · ·
· · · 0 0 0 · · · 0 (xj − xi) 0 · · ·

 (1.38)

Thus, the grasp map has at most rank=5. Hence, for the frictional hard contact model,
two contact points are not sufficient to realize wrench resistability, as no torques can be
generated about the axis passing through the two contact points. Consider an mth finger

placed at
[
xm ym zm

]T
. Again, the basis vectors of the contact forces can be aligned with
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the reference frame. The grasp map is:

G =
[
· · · Gi · · · Gj · · · Gm · · ·

]

=


· · · 1 0 0 · · · 1 0 0 · · · 1 0 0 · · ·
· · · 0 1 0 · · · 0 1 0 · · · 0 1 0 · · ·
· · · 0 0 1 · · · 0 0 1 · · · 0 0 1 · · ·
· · · 0 0 0 · · · 0 0 0 · · · 0 zm ym · · ·
· · · 0 0 0 · · · 0 0 −xj · · · zm 0 −xm · · ·
· · · 0 0 0 · · · 0 xj 0 · · · ym −xm 0 · · ·


If the mth contact lies along the line connecting contacts i and j, then ym = zm = 0, and the
grasp map is not full rank. Otherwise, the grasp map is full rank.

Solution #4: In order to prove that the condition Q(~x) � 0 is the same as the condition

∃ η ≤ 0 such that Q(~x) + ηI � 0 . (1.39)

note that Equation (1.39) is only true if there exists a scalar η such that η ≤ −λmin(Q),
where λmin(Q) is the smallest eigenvalue of Q. However, in order for η to be a non-positive
number, it must be true that λmin(Q)/ge0. Hence, eigenvalues of Q must be non-negative,
which implies that Q is a positive-semi-definite matrix.

Solution #5:

For the hard frictional point contact model constraint matrix in Equation (1.4), the opti-

mization barrier function: Φ(~f) = log(det(P(~f))), takes the form:

Φ(~f) = log(det(P(~f))) = log
[
µfn(µ2f 2

n − (f 2
x + f 2

y ))
]
. (1.40)

where P(~f) � 0. As the contact force approaches the friction cone boundary, (f 2
x + f 2

y ) →
µ2f 2

n. Hence

lim
(f2

x+f2
y )→µ2f2

n

Φ(~f) = lim
z→0+

log(z) = −∞ .

From Solution #1 we also know that the constraint P � 0 implies that fn ≥ 0, and hence
the term

[
µ2f 2

n − (f 2
x + f 2

y )
]

in Equation (1.40) is a paraboloid, which is a convex function.
The monotonicity of the log(·) function does not change the convex nature of the function.

For a more general proof of the convexity of Φ(~f) which holds for other contact models, see
[2].

Solution #6: Proposition 1.5.1 can be proved as follows.

For a hard point contact with friction, the ith finger contact force can be expressed as
~fi = f i

t
~ti + f i

n~ni where ~ti is the unit vector pointing in the direction of the tangential
frictional force and ~ni is the inward pointing unit normal vector. The ith finger’s net contact
force can be expressed as ~fi,net = ~fi,p + s~fi,int. The internal contact force can be expressed

as ~fi,int = ξi,int
~ti,int + ηi,int~ni, where the constants ξi,int and ηi,int denote the components of
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the internal force along the ith finger’s tangential and normal directions, and ηi,int > 0 for

every active contact. Since ~fi,net = ~fi,p + s(ξi,int
~ti,int + ηi,int~ni), as s increases, the magnitude

of the normal force is sηi,int, which varies linearly with increasing value of s.
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