
Chapter 2

The Configuration Space of a Rigid
Body

This chapter considers the problem of a freely moving rigid body, B, surrounded by stationary
rigid bodies O1, . . . ,Ok. The stationary bodies represent fingertips, fixturing elements, or
terrain segments supporting B against gravity. The body B represents the object begin
grasped, a workpiece, or the rigidified multi-legged vehicle. This chapter introduces the
notion of the rigid-body configuration space, or c-space, which is essential for analyzing the
mobility and stability of B with respect to its surrounding bodies. The chapter begins with a
parametrization of B’s c-space in terms of hybrid coordinates. Configuration space obstacles
(c-obstacles) are then introduced, and several of their properties are described. The chapter
proceeds to describe the first and second-order geometry of the c-space obstacles, as this
geometry plays a key role in subsequent chapters. Finally, the notion of generalized forces
or wrenches is introduced in the context of configuration space.

2.1 The Notion of Configuration Space

We assume that B is a rigid body, which we model as a set of points positioned within an
ambient worksapce, which is assumed to be in an n-dimensional Euclidean space, IRn, where
n = 2 or 3. Rigidity imples that the distance between B’s constituent points is fixed. B’s
configuration specifies the stationary state of the object in the workspace. Equivalently, the
position of each of B’s constituent points can be determined from its configuration. The
specification of B’s configuration requires a selection of two frames, depicted in Figure 2.1.
The first is a fixed world frame, denoted FW , which establishes a coordinate system for the
workspace in which B moves. The second is a body frame, denoted FB, which is rigidly
attached to B. The configuration of B can be specified by a vector d ∈ IRn describing the
position of FB’s origin with respect to the origin of FW , and a rotation matrix, R ∈ IRn×n,
whose columns describe the relative orientation of the axes of FB with respect to those of
FW . The collection of n×n orientation matrices forms a group under matrix multiplication,
termed the special orthogonal group, and denoted by the symbol SO(n).

21



W

body O1

stationary

body O
stationary

2
F
B

F
B

F

x = Rr + d

B(q)

B

space (d,R)
configuration

Figure 2.1: The physical geometry underlying the c-space representation of a 3D body B.
Think of B’s configuration as a placement of B in its workspace.

Characterization of SO(n). The special orthogonal group of n × n orientation matrices
is given by

SO(n) =
{

R ∈ IRn×n : RT R = I and det(R) = 1
}

,

where I is an n × n identity matrix.

This characterization of SO(n) provides two important insights. First, every rotation matrix
acts on vectors v ∈ IRn so as to preserve their length, since ‖Rv‖ = (vT RT RvT )1/2 = ‖v‖.
Second, SO(n) is a compact smooth manifold of dimension 1

2
n(n−1) in the space IRn×n. In

particular, SO(2) is a one-dimensional loop in the space of 2 × 2 matrices, while SO(3) is a
compact three-dimensional manifold in the space of 3 × 3 matrices.

Definition 1 (Configuration Space). The configuration space of B, denoted C, is the smooth
manifold C = IRn×SO(n), consisting of pairs (d, R) such that d ∈ IRn and R ∈ SO(n).

The dimension of C is the sum: m = n + 1

2
n(n−1) = 1

2
n(n + 1), giving m = 3 when B is a

2-dimensional (2D) body and m=6 when B is a 3-dimensional (3D) body. We now introduce
a parametrization of C in terms of hybrid coordinates [7]. This parametrization allows us to
locally represent C as a Euclidean space IRm, with some periodicity rules for the coordinates
representing the orientation matrices.

We first introduce coordinates for SO(n). The group SO(n) is an important instance of a
Lie group.1 A standard means for parametrizing Lie groups is via exponential coordinates:

R(θ) = e[θ×]

where the matrix exponential can be formally defined via the series: exp(A) = I +A+ 1
2!
A2+

· · · , and where [θ×] is a skew-symmetric matrix2.

1Lie groups are matrix groups possessing a smooth manifold structure.
2These skew-symmetric matrices form the Lie Algebra of the Lie group SO(3).



Exponential Coordinates for SO(n). The exponential coordinate for SO(2) is a scalar
θ (since SO(2) is a one-dimensional manifold). The skew symmetric matrix in the matrix
exponential representation of SO(2) is the 2 × 2 matrix [θ×] = θJ where

J =
»

0 −1
1 0

–

.

Consequently, the 2×2 orientation rotation matrices are globally parametrized by the formula

R(θ) =

[

cos θ − sin θ
sin θ cos θ

]

θ ∈ IR,

where θ is the relative orientation of FB relative to FW , measured using the right-hand-
rule (which measures angles in the counterclockwise direction around the upward-pointing
normal to the plane).

For 3 × 3 rotation matrices in SO(3), the skew symmetric matrix [θ×] has a physical inter-
pretation as a cross-product matrix: [θ×]~v = θ × ~v for any vector ~v ∈ IR3. The direction
of the vector θ physically corresponds to the axis of rotation, and the norm of the vector,
||θ||, corresponds to the angle of rotation3 about the axis of rotation. For SO(3), it can be
shown that the matrix exponential formula reduces to Rodriguez’ Formula:

R(θ) = I + sin(‖θ‖)[θ̂×] +
(

1−cos(‖θ‖)
)

[θ̂×]2 θ ∈ IR3,

where I is a 3 × 3 identity matrix and [θ̂×] is the cross-product matrix of θ̂ = θ/‖θ‖. In
Rodrigez’ formula θ̂ and ‖θ‖ are the axis and angle of rotation of R(θ), measured according
to the right-hand rule.

The parametrization of SO(2) is periodic in 2π, with each 2π interval parametrizing the
entire SO(2). The parametrization of SO(3) in terms of θ satisfies the following periodicity
rule. The origin of θ-space is mapped by R(θ) to the identity matrix I. Similarly, all
concentric spheres of radius ‖θ‖ = 2π, 4π, . . . are mapped to the identity matrix I. Each
pair of antipodal points on the sphere of radius ‖θ‖ = π is mapped to the same matrix
R, since R(πθ̂) = R(−πθ̂) for all θ̂. Similarly, antipodal points on the spheres of radius
‖θ‖ = 3π, 5π, . . . are identified. Consider now a path in θ-space from the origin to the sphere
of radius π along a fixed direction θ̂. This path represents a rotation of B about the axis of
rotation θ̂ by an angle which increases from zero to π. Rotation of B about the same axis
by angles π to 2π continues on a path which moves along −θ̂ back to the origin. Since θ̂

can have any direction, the entire manifold SO(3) is parametrized by the ball with center at
the origin and radius π, with antipodal points on its bounding sphere identified.

Definition 2 (Hybrid Coordinates). When B is a 2D body, the hybrid coordinates for
its c-space are q = (d, θ)∈ IR2 × IR. When B is a 3D body, the hybrid coordinates4 for its
c-space are q = (d, θ) ∈ IR3 × IR3.

3Euler’s Theorem states that every rigid body rotation is equivalent to a rotation about a fixed axis.
4Formally, the hybrid coordinates are IRn × se(n), where se(n) is the Lie algebra of SO(n). However,

since se(n) is isomorphic to IRn, IRn is used hereafter for simplicity.
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Figure 2.2: (a) Hybrid coordinates q = (dx, dy, θ) for B’s c-space. (b) A c-space trajectory
representing B’s physical motion.

When B is a 2D body, its c-space parametrization is simply IR3 in hybrid coordinates,
partitioned into 2π layers along the θ axis (see Figure 2.2). Each 2π layer provides a full
parametrization of c-space. Hence a path q(t) can freely move between layers, or it can
remain in a particular layer by wrapping through its bounding planes. When B is a 3D
body its c-space parametrization is simply IR6 in hybrid coordinates, with the θ coordinates
partitioned into a central ball and concentric shells each having a radius/thickness of π.
Here, too, a path q(t) can freely move between neighboring shells, or it can remain in the
inner ball by wrapping through antipodal points on its bounding sphere.

To summarize, c-space allows us to model the physical motions of B as trajectories, q(t), of
a point in C, which is parametrized by IRm, where m = 3 (for rigid bodies moving in the
plane) or 6 (for bodies moving in 3-dimensional Euclidean space). Before we proceed to fill
this space with forbidden regions representing the stationary finger bodies, let us review the
notion of a rigid-body transformation.

The rigid-body transformation. As B moves along a c-space trajectory q(t), the position
of its points with respect to the world frame FW is specified as follows. Let b denote the
postion of a point in B, as seen by an observer the body frame FB, and let x denote the
coordinates of the same point as seen by an observer in FW (Figure 2.2(a)). The rigid-body
transformation, denoted X(q, b), gives the world position of B’s points at a configuration q,

x = X(q, b)
△
=

{

R(θ)b + d q=(d, θ)∈IR3, b∈B (2D case)
R(θ)b + d q=(d, θ)∈IR6, b∈B (3D case).

The notation Xb(q) will specify the rigid-body transformation such that the point b ∈ B is
held fixed. In this case Xb(q) gives the world position of the fixed point b as a function of q.



Figure 2.3: The c-obstacle induced by a stationary disc, shown for two choices of FB’s origin:
(a) at the ellipse’s center, and (b) at the ellipse’s tip.

2.2 Configuration Space Obstacles

The rigid stationary bodies O1 . . .Ok form obstacles which constrain the possible motions of
B. Since it is physically impossible for two different rigid bodies to occupy the same space,
the stationary bodies induce forbidden regions in B’s c-space, called c-obstacles. Let B(q)
denote the set of physical points occupied by B when it is at a configuration q, and let O be
one of the stationary bodies, which is also modeled as a set of points. The c-obstacle induced
by O, denoted CO, is the set of configurations q at which the set B(q) intersects the set O,

CO △
= {q ∈ C : B(q) ∩ O 6= ∅} where m = 3 or 6.

When B is an n-dimensional body, the c-obstacle CO is an m-dimensional set in the ambient
m-dimensional c-space, even when O is a point obstacle. The boundary of CO is an (m−1)-
dimensional set, consisting of configurations at which B touches O from the outside. A curve
on CO’s boundary represents a motion of B which maintains continuous contact with O. In
planar environments the boundary of CO can be conceptually constructed as follows. First
fix the orientation of B to a particular value θ. Then move B along the perimeter of O
with this fixed orientation, making sure that B maintains continuous contact with O. The
trace of B’s origin during this circumnavigation forms a closed curve which is precisely the
boundary of the fixed-orientation slice of CO. When this process is repeated for all θ, the
resulting set of curves forms a representation of the c-obstacle boundary.

Example 1. Figure 2.3(a) shows an ellipse B moving in a planar environment populated
by a stationary circular disc O. The c-obstacle induced by O is depicted in Figure 2.3(b)



for two choices of FB’s origin, at the ellipse’s center and at the of the ellipse’s major axis.
While the two c-obstacles differ in their geometric shape, they are topologically equivalent.
This observation holds true under any choice of FW and FB.

The c-obstacle distance function. An analytic description of the c-obstacle can be
constructed as follows. Let dst(x,O) denote the minimal distance of a point x from a fixed
set O, given by

dst(x,O) = min
y∈O

{‖x − y‖} .

The minimal distance between B(q) and O, denoted d(q), is defined by

d(q)
△
= min

x∈B(q)

{dst(x,O)} = min
b∈B

{

dst
(

X(q, b),O
)}

,

where x = X(q, b) is the rigid-body transformation of the point b ∈ B when B lies at
configuration q. Note that d(q) is strictly positive for all q lying outside CO, and is identically
zero for any q lying inside CO. Hence the c-obstacle CO is described by the inequality,

CO = {q ∈ C : d(q) ≤ 0}. (2.1)

One can equivalently write CO = {q ∈ C : d(q) = 0}, but formulation (2.1) anticipates later
chapters where c-space is used to analyze the motions of a quasi-rigid body.

A detailed discussion of c-obstacles can be found in textbooks dedicated to robot motion
planning [1, 2, 4, 5]. The following list summarizes some of their key properties 5.

1. Compactness and connectivity propagate. When rigid body B is a compact and
path connected 6 set, any compact and path connected obstacle O induces a compact
and path connected c-obstacle CO.

2. Union propagates. When an obstacle O is a union of two sets, O = O1 ∪ O2, its
c-obstacle is a union of the c-obstacles corresponding to the individual sets, CO =
CO1 ∪ CO2.

3. Convexity propagates. Recall that a set S ⊆ IRn is convex if every pair of points in
S can be connected by a line segment lying wholly in S. When O and B are convex
bodies, each fixed-orientation slice of CO is a convex set.

4. Polygonality propagates. When B and O are polygonal bodies, each fixed-orientation
slice of CO is a two-dimensional polygonal set. When B and O are polyhedral bodies,
each fixed-orientation slice of CO is a three-dimensional polyhedral set.

5The term “propagate in this list implies that the property in the n-dimensional Euclidean workspace
propagates, or is conserved, under the mapping to configuration space.n

6A set, S, is set to be path-connected if for any two points x, y ∈ S, there exists a continuous path lying
within S which connects x and y. Connected set in R

n are necessarily path-connected.



2.2.1 Construction the c-obstacle boundary

Planar polygonal object. A popular method for computing the explicit shape of the
c-obstacles for the case of convex planar polygonal bodies is known as the star algorithm.
The method assumes that B and O are both convex polygons. In this case, each fixed-θ
slice of CO, denoted CO|θ, is also a convex polygon. The vertices of CO|θ correspond to
configurations at which a vertex of B (having a fixed orientation θ) touches a vertex of O,
such that the bodies’ interiors are disjoint. The vertices on the boundary of CO|θ can be
computed by a simple algorithm which merges the vertices of B and O on a common unit
circle known as the star circle [2, 4].

Planar convex smooth bodies. When B is a smooth convex body and O is a circular
disc, one can explicitly parametrize the boundary of CO as follows. First note that as B
traces the perimeter of O with a fixed orientation, the contact point monotonically traces the
entire perimeter of B. Also note that the operation where B traces, with a fixed orientation,
the perimeter of O in FW is equivalent to an operation where O traces the perimeter of
the stationary B in FB. Based on these observations, let β(s) for s∈ IR+ be an arc-length
parametrization7 of B’s perimeter in FB, which implies that the tangent β′(s) is a unit vector.
Assume that the boundary is parameterized in a clockwise fashion so that Jβ ′(s) is the unit

outward normal to B, where J =
»

0 −1
1 0

–

. Let r be the radius of disc O, and let x0 be

the position of its center in FW . Then during a motion of O along B’s perimeter, the curve
traced by O’s center in FB is: β(s) + rJβ′(s) for s ∈ IR. Based on a simple calculation (see
Exercise 8), the curve traced by B’s origin in FW is: d(s, θ) = x0 − R(θ)

(

β(s) + rJβ′(s)
)

,
where R(θ) is B’s fixed orientation matrix. When θ varies freely in IR, the function ϕ(s, θ)=
(

d(s, θ), θ
)

: IR2 → IR3 provides a parametrization of CO’s boundary in term of s and θ. The
c-obstacles depicted in Figure 2.3 were generated using this technique.

Example 2. Assume that B is a convex smooth body whose boundary is arc-length parametrized
(in a clockwise fashion) by the function β(s). Consider an elliptical obstacle, described
by: (x − x0)

T P (x − x0) ≤ 1 where P > 0. At the contact point x(s): P (x(s) − x0) =
−λR(θ0)Jβ ′(s) for some λ > 0. Multiplying both sides by P−1/2 gives: P 1/2(x(s) − x0) =
−λP−1/2R(θ0)Jβ ′(s). Taking the norm of both sides gives:

1 = (x(s) − x0)
T P (x(s) − x0) = λ‖P−1/2R(θ0)Jβ ′(s)‖ ⇒ λ(s) =

1

‖P−1/2R(θ0)Jβ ′(s)‖ .

Substituting for λ(s) in the contact-normals equation gives

P (x(s) − x0) = −λ(s)R(θ0)Jβ′(s) ⇒ x(s) = x0 − λ(s)P−1R(θ0)Jβ′(s).

On the other hand, x(s) = R(θ0)b(s) + d(s). Substituting for x(s) and solving for d(s) gives

d(s, θ) = x(s) − R(θ)b(s) = x0 − λ(s)P−1R(θ)Jβ ′(s) − R(θ)b(s)
= x0 − R(θ) (b(s) + λ(s)P−1Jβ ′(s)) ,

where θ is now freely varying in IR. Note that b(s) + λ(s)P−1Jβ ′(s) is the curve traced by
O’s center in FB.

7An appendix to this chapter briefly reviews the differential geometry of curves and surfaces.



The c-obstacle boundary is generally a piecewise smooth surface in the 2D case. For instance,
when B is a convex polygon and O is a disc, CO’s boundary consists of two types of smooth
two-dimensional “patches” meeting along one-dimensional curves. An edge-patch generated
by an edge of B sliding on O, and a vertex-patch generated by a vertex of B sliding on O.
The boundary of CO is locally smooth at any configuration at which B touches O at a single
point, such that the two bodies are smooth in the vicinity of the contact. In particular, the
entire boundary of CO is smooth when B and O are smooth convex bodies (see exercise).
Similar observations hold for the five-dimensional boundary of CO in the 3D case.

2.3 The C-Obstacles 1’st and 2’nd-Order Geometry

When B is contacted by stationary finger bodies O1, . . . ,Ok, its configuration q lies on the
boundary of each c-obstacle COi for i = 1, . . . , k. We shall see in Chapter 4 that the free
motions of B are determined in this case by the first and second-order geometry of the c-
obstacle boundaries i.e., by the c-obstacles’ normal and curvature. Let us now focus on a
particular stationary body O, and derive formulas for the normal and curvature of its c-
obstacle boundary, denoted bdy(CO). We shall assume that B touches O at a single point,
such that the two bodies have smooth boundaries in the vicinity of the contact. We first
obtain a formula for the c-obstacle normal, then obtain a formula for its curvature.

2.3.1 The C-Obstacle Normal

By construction CO = {q ∈ C : d(q) ≤ 0}. If the distance function d(q) were differentiable
at q ∈ bdy(CO), its gradient ∇d(q) would be collinear with the c-obstacle outward normal
at q. But d(q) is identically zero inside CO and is monotonically increasing away from CO,
implying that it is non-differentiable at q ∈ bdy(CO). However, because d(q) is Lipschitz
continuous (the notion of Lipschitz continuity and other relevant aspects of non-smooth
analysis are reviewed in Appendix B), its differential properties can be analyzed. Lipschitz
continuous functions are automatically piecewise smooth, and they possess a generalized
gradient at points were the function is non-differentiable. The generalized gradient of a Lip-
schitz continuous function f at x, denoted ∂f(x), is the convex combination of the gradients
∇f(y) for all y in an arbitrarily small neighborhood of x (see appendix). In particular, ∂f(x)
reduces to ∇f(x) at points where f is differentiable. Let us now compute ∂d(q) and see how
it determines the c-obstacle normal.

The c-obstacle distance function is the minimum over a parametrized family of functions,
d(q) = min{dst

(

X(q, b),O
)

} such that b varies in B. In order to emphasize that only q is a
free variable, let us write d(q) = min

b∈B{dst
(

Xb(q),O
)

}. Two basic results from non-smooth
analysis are needed to compute ∂d(q). The first concerns the minimum over a parametrized
family of functions.

Theorem 1 (Generalized Gradient of Pointwise Minimum). Let ft(x) for t∈T be a parametrized
family of functions such that ft(x) is Lipschitz continuous in x for each t∈T . Let F (x) =
mint∈T {ft(x)}. Then F (x) is also Lipschitz continuous in x. When the minimum at x is



attained by a discrete set of functions, F (x) = ft1(x) = · · · = ftN (x), the generalized gradient
of F (x), denoted by ∂F (x), is given by

∂F (x) =

N
∑

j=1

λj∂ftj (x) 0 ≤ λj ≤ 1 for j = 1 . . . N and
∑N

j=1 λj = 1,

where ∂ftj (x) is the generalized gradient of ftj (x) for j = 1 . . .N .

Note that ∂F (x) is a convex combination of ∂ftj (x) for j = 1 . . .N . In order to apply the
theorem to the family of functions dst

(

Xb(q),O
)

for b ∈ B, we must verify that each of these
functions is Lipschitz continuous in q. The rigid-body transformation Xb(q) is smooth in q
and therefore Lipschitz continuous in q. The minimal distance function, dst(x,O), is shown in
the appendix to be Lipschitz continuous in x. Since Lipschitz continuity is preserved under
function composition (see appendix), each function dst(Xb(q),O) is Lipschitz continuous.
Hence we may apply the theorem to the computation of ∂d(q). Let b0 ∈ B be the contact
point of B(q) with O. Then the minimum over the functions dst(Xb(q),O) such that b varies
in B is attained by the single function dst(Xb0(q),O). Based on the theorem, the generalized
gradient of d(q) is given by

∂d(q) = ∂dst
(

Xb0(q),O
)

.

The function dst
(

Xb0(q),O
)

is a composition of dst(x,O) with x = Xb0(q). The generalized
gradient of such a composition can be computed with the following generalized chain rule.

Theorem 2 (Generalized Chain Rule). Let g(y) : IRn → IR be Lipschitz continuous and let
h(x) : IRm → IRn be a differentiable function. Then the function composition f(x) = g(h(x))
is Lipschitz continuous, and at points where the Jacobian Dh(x) has full-rank the generalized
gradient of f is given by

∂f(x) = ∂g
(

h(x)
)

· Dh(x),

where ∂g
(

h(x)
)

is the generalized gradient of g(y) evaluated at y = h(x) (i.e. ∂f(x) =
{w·Dh(x) : w ∈ ∂g(h(x))}).

Based on the generalized chain rule, ∂dst
(

Xb0(q),O
)

= ∂dst(x0,O) · DXb0(q), where x0 =
Xb0(q) is the world position of the contact point b0. The Jacobian DXb0(q) is given by the
formula (see exercise),

DXb0(q) =

{

[I JR(θ)b0]2×3 q = (d, θ) ∈ IR3 (2D case)

[I [(R(θ)b0)×] ]3×6 q = (d, θ) ∈ IR6 (3D case),

where J =
»

0 −1
1 0

–

, I is a 2 × 2 identity matrix in the 2D case and a 3 × 3 identity matrix

in the 3D case, and [R(θ)b0×] is a 3 × 3 cross-product matrix. As shown in the appendix,
the generalized gradient of dst(x,O) at x0 is given by

∂dst(x0,O) = s · n(x0) for 0 ≤ s ≤ 1,



where n(x0) is the outward unit normal to O at x0. Substituting for DXb0(q) and ∂dst(x0,O)
in ∂d(q) = ∂dst(x0,O) · DXb0(q), and then taking the transpose (to represent ∂d(q) as a
column vector), yields:

∂d(q) = sDXT
b0

(q)n(x0) =















s

(

n(x0)
n(x0)·JR(θ)b0

)

0≤s≤1 (2D case)

s

(

n(x0)
R(θ)b0 × n(x0)

)

0≤s≤1 (3D case).
(2.2)

The generalized gradient of d(q) at q∈bdy(CO) is thus a line segment with a base point at q.
Moreover, ∂d(q) points outward with respect to CO, since d(q) is monotonically increasing
away from CO.

C-obstacle Normal. Let us see why the line segment ∂d(q) is normal to the boundary of
the the c-obstacle at q. Let α(t) for t∈IR be any c-space trajectory lying in bdy(CO), such
that α(0) = q. Since B maintains continuous contact with O along α(t), d(α(t)) = 0 along
this motion. By the generalized chain rule d

dt
d(α(t)) = ∂d(α(t)) · d

dt
α(t) = 0 for t ∈ IR. Since

d
dt

∣

∣

t=0
α(t) is an arbitrary tangent vector to CO’s boundary at q, the line segment ∂d(q) is

perpendicular to the tangents to CO’s boundary at q. Let η(q) denote the endpoint of this
line segment, obtained by substituting s = 1 in (2.2).

η(q) = DXT
b0(q)n(x0) =















(

n(x0)
n(x0)·JR(θ)b0

)

q=(d, θ) ∈ IR3 (2D case)
(

n(x0)
R(θ)b0 × n(x)

)

q=(d, θ) ∈ IR6 (3D case),
(2.3)

where b0 is B’s contact point with O, and n(x0) is the outward unit normal to the boundary of
O at x0 =Xb0(q). We shall see in Section 2.3 that η(q) can be interpreted as the generalized
force, or wrench, generated by a unit-magnitude normal force acting on B at x0. The
vanishing of the product ∂d(α(t)) · d

dt
α(t) reflects the physical fact that a normal contact

force does no work along any contact preserving motion of B as it slides along O’s boundary.

Example: Let us verify the formula for η(q) using the parametrization ϕ(s, θ) for CO’s
boundary, associated with an elliptical body B and a disc finger O. It can verified (see
exercises) that the tangent vectors ∂

∂s
ϕ(s, θ) and ∂

∂θϕ(s, θ) are linearly independent and
therefore span the tangent plane to CO at ϕ(s, θ). The cross-product of the two tangent
vectors should therefore be collinear with η(q). A straightforward calculation yields

∂

∂s
ϕ(s, θ) × ∂

∂θ
ϕ(s, θ) =

(

−JR(θ)β′(s)
(−JR(θ)β ′(s)) · JR(θ)β(s)

)

=

(

n(x)
n(x)·JR(θ)b

)

,

where b = β(s), x = R(θ)β(s) + d(s, θ), and n(x) = −JR(θ)β ′(s) (since JR(θ) = R(θ)J ,
and Jβ′(s) is the outward unit normal to B at β(s)). We see that the c-obstacle normal
computed from ϕ(s, θ) matches the generic formula for η(q).

2.3.2 The C-Obstacle Curvature

The c-obstacle curvature depends on the curvature of the contacting bodies as well as on
lower-order geometric properties of the contacting bodies. We shall derive the c-obstacle



curvature formula for the 2D case, where CO’s boundary is a surface in IR3. Let us first
introduce notation for the curvature of the contacting bodies, starting with the stationary
body O. Recall that n(x) is the outward unit normal to O at points x ∈ bdy(O). Let x(t)
be a curve on O’s boundary such that x(0)=x and d

dt

∣

∣

t=0
x(t)= ẋ. The curvature of O at x,

denoted κO(x), is a signed scalar measuring the change in n(x) along x(t),

d

dt

∣

∣

∣

∣

t=0

n(x(t)) = κO(x)ẋ.

Note that the change in n(x) is tangent to O’s boundary at x. The sign of κO(x) is positive
when O is convex at x, negative when O is concave at x, and zero when O is flat at x. The
radius of curvature of O at x, denoted rO(x), is the reciprocal of the curvature, rO(x) =
1/κO(x). The circle of curvature at x is the circle tangent to O’s boundary at x with radius
|rO(x)|. It forms the boundary’s second-order approximation at x. The curvature of B
is similarly defined with respect to its body frame. The curvature of B at b ∈ bdy(B) is
the signed scalar κB(b), and its radius of curvature is rB(b) = 1/κB(b). In the following
discussion, the shorthand notation κB and κO will be used for κB(b) and κO(x).

Let S denote the boundary of the c-obstacle CO, and let TqS denote the tangent space to S
at q. Recall that η(q) is the outward normal to CO at q ∈ S. Let η̂(q) = η(q)/‖η(q)‖ be the
unit normal to S, and let q(t) be a curve on S such that q(0) = q and d

dt

∣

∣

t=0
q(t) = q̇. The

curvature of S at q, denoted κ(q, q̇), measures the change in η̂(q) along tangent directions
q̇ ∈ TqS,

κ(q, q̇) = q̇ · d

dt

∣

∣

∣

∣

t=0

η̂(q(t)) = q̇ · Dη̂(q)q̇ q̇ ∈ TqS.

The curvature κ(q, q̇) is a quadratic form in the tangent directions q̇ ∈ TqS. Since TqS is a
two-dimensional space, Dη̂(q) acts as a 2×2 symmetric matrix on TqS. The eigenvalues and
eigenvectors of Dη̂(q) are the principal curvatures and directions of S at q. The principles
curvatures (or their reciprocals, the principal radii of curvatures) are analogous to the scalar
curvature of a planar curve. The quadratic surface tangent to S at q having the principal
curvatures and directions of S forms the surface’s second-order approximation at q.

C-obstacle Curvature. Recall that the curvature of a surface is related to the derivature
of the unit normal vector to that surface. Since the normal to the c-obstacle surface, S, is
η(q) = DXT

b (q)n(x), the derivative of η(q) along a trajectory q(t) lying in S involves the
contact point velocity. The contact point velocity depends on the curvature of B and O as
stated in the following lemma (whose proof appears in the appendix to this chapter).

Lemma 2.3.1 (Contact Point Velocity). Let q(t) be a c-space trajectory on S, and let x(t)
be B’s contact point with O along q(t). Then the contact point velocity is given by

ẋ =
κB

κB+κO
[I JR(θ)bc] q̇ q̇ = d

dt
q(t),

where κB and κO are the curvatures of B and O at x(t), and bc is B’s center of curvature at

x(t) expressed in FB; I is a 2 × 2 identity matrix and J =
»

0 −1
1 0

–

.
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Figure 2.4: (a) The contacting bodies are replaced by their circle of curvature at x. (b) The
B-circle executes a contact preserving motion along the O-circle.

Practically, the denominator κB + κO is always a non-negative quantity. For instance, when
O is concave at x the body B is necessarily convex at x and rB ≤ |rO| (otherwise the two
bodies interpenetrate). In this case |κO| ≤ κB and indeed κB+κO ≥ 0. The quantity κB+κO is
strictly positive when the bodies’ second-order approximations maintain point contact at x.
Since we assume a single point contact, we may as well assume that κB+κO > 0.

The geometric interpretation of the contact velocity formula, depicted in Figure 2.4, is as
follows. Let Xbc

(q) = R(θ)bc + d be the world position of B’s center of curvature at x, such
that bc is held fixed on B. Then Ẋbc

= [I JR(θ)bc] q̇, and the contact velocity formula asserts
that ẋ = κB/(κB + κO)Ẋbc

. In order to justify the latter formula, let B and O be replaced
by their circles of curvature at x. Let the B-circle execute any contact-preserving motion
along the stationary O-circle. The B-circle’s center, Xbc

, moves along a circular arc of radius
|rB+rO| during this motion (see Figure 2.4(b)). The circles’ contact point, x, moves along a
concentric circular arc of radius |rB| during this motion. Since x and Xbc

lie on a common
radius vector emanating from the O-circle center, the two points move with identical angular
velocities about the O-circle center. Moreover, the two points move in the same direction
when rB ≥ 0. Assuming this case, let φ̇ be the common angular velocity of the two points.
Then ẋ = |rO|φ̇ while Ẋbc

= |rB+rO|φ̇. Substituting φ̇ = Ẋbc
/|rB+rO| in the expression for

ẋ gives: ẋ = |rO|/|rB+rO|Ẋbc
. Finally, |rO|/|rB+rO| = κB/(κB+κO) when rB ≥ 0, giving the

contact velocity formula.

Based on the contact velocity formula, the c-obstacle curvature form is as follows.

Lemma 2.3.2 (C-Obstacle Curvature). Let S be the boundary of CO, let q ∈ S, and let
η(q) be the normal to S at q. The curvature form of S at q is given by

κ(q, q̇) = 1
‖η(q)‖ · 1

κB+κO
q̇T

[

κBκOI κBκOJRbc

κBκO(JRbc)
T (κORb−n(x))T (κBRb+n(x))

]

q̇ q̇ ∈ TqS,

where x=X(q, b) is B’s contact point with O, κB and κO are the curvatures of B and O at
x, n(x) is the contact normal at x, and bc is B’s center of curvature at x expressed in FB;

I is a 2 × 2 identity matrix and J =
»

0 −1
1 0

–

.

The following proof sketch describes how the contact velocity formula determines the c-
obstacle curvature form. The complete proof appears at the end of this chapter.
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when one of the two bodies is concave at x.

Proof sketch. Let q(t) be a curve on S such that q(0) = q and d
dt

∣

∣

t=0
q(t) = q̇. The proof

first argues that the curvature form of S can be written in terms of η(q) as follows

κ(q, q̇) =
1

‖η(q)‖ q̇ · d

dt

∣

∣

∣

∣

t=0

η(q(t)) q̇ ∈ TqS. (2.4)

Recall that the c-obstacle normal is given by η(q) = DXT
b (q)n(x), where DXT

b (q) = [I JRb]T

and n(x) is the unit normal to O at x. Thus we have to compute the derivative

d

dt

∣

∣

∣

∣

t=0

η(q(t)) = DXT
b (q)

d

dt

∣

∣

∣

∣

t=0

n(x(t)) +

(

d

dt

∣

∣

∣

∣

t=0

DXT
b (q(t))

)

n(x).

Since B maintains continuous contact with O along q(t), the contact x(t) moves along O’s
boundary. Hence d

dt

∣

∣

t=0
n(x(t)) = κOẋ in the first summand. Substituting ẋ =

κB
κB+κO

[I JRbc]q̇

according to the contact velocity formula gives

DXT
b (q)

d

dt

∣

∣

∣

∣

t=0

n(x(t)) =
κBκO
κB+κO

[

I
(JRb)T

]

[I JRbc] q̇ =
κBκO
κB+κO

[

I JRbc

(JRb)T b · bc

]

q̇,

where we used the identities RT R = JT J = I. In the second summand, d
dt

∣

∣

t=0
DXT

b (q) =
[

O J d
dt

∣

∣

t=0
(Rb)

]T
, where O is a 2 × 2 matrix of zeroes. The proof computes the term

d
dt

∣

∣

t=0
(Rb) by invoking the contact velocity formula for a second time. The resulting second

summand is given by

(

d
dt

∣

∣

t=0
DXT

b (q(t))
)

n(x)=− 1
κB+κO

[

O ~0
κOnT (x)J κBnT (x)Rbc

]

q̇.

Writing the derivative d
dt

∣

∣

t=0
η(q(t)) in terms of the two summands, then pre-multiplying by

1/‖η(q)‖ and q̇, gives the formula for κ(q, q̇) specified above. �

Example: Let us compute the curvature of the fixed-orientation slices of CO, denoted CO|θ.

The vector tangent to CO|θ is q̇ = (ḋ, 0) such that ḋ ⊥ n(x). This tangent vector corresponds
to an instantaneous translation of B along the direction tangent to O’s boundary at x. The
c-obstacle curvature along q̇ = (ḋ, 0) is given by

κ
(

q, (ḋ, 0)
)

=
κBκO

κB + κO

‖ḋ‖2
.



The coefficient preceding ‖ḋ‖2
is the curvature of the c-obstacle slice CO|θ at q. Its reciprocal

is the radius of curvature of CO|θ at q,

(

κBκO

κB + κO

)−1

= rB(x) + rO(x).

We see that the radius of curvature of CO|θ at q is the algebraic sum of the radii of curvature
of B and O at the contact. When both bodies are convex at x, rB(x) ≥ 0 and rO(x) ≥ 0. In
this case rB(x) + rO(x) ≥ 0, implying that CO|θ is convex at q (Figure 2.5(a)). When one
of the bodies is concave at x, say O, then rB(x) ≥ 0 while rO(x) < 0. Since |rO(x)| > rB(x),
rB(x) + rO(x) < 0 in this case, implying that CO|θ is concave at q (Figure 2.5(b)).

C-Obstacle Curvature in the 3D Case. The c-obstacle curvature in the 3D case depends
on the same geometric data as in the 2D case, with the bodies’ surface curvatures replacing
the scalar curvatures κB and κO. The c-obstacle formula in the 3D case is as follows (see [8, 9]
for a detailed derivation). Let S denote the five-dimensional boundary of CO, let q ∈ S,
and let x = X(q, b) be B’s contact point with O. We assume that S is locally smooth at
q, and denote by TqS the five-dimensional tangent space of S at q. Let q(t) be a curve
on S such that q(0) = q and d

dt

∣

∣

t=0
q(t) = q̇. The curvature form of S at q is given by

κ(q, q̇) = q̇ · d
dt

∣

∣

t=0
η̂(q(t)), where q̇ ∈ TqS and η̂(q(t)) is the unit normal to S along q(t). The

surface curvature of B and O at x is determined by their respective curvature forms LB and
LO. These are the linear maps which act on the tangent plane of the respective surfaces to
yield the change in the surface-normal along a given tangent direction. The curvature form
of S at q is given by

κ
(

q, q̇
)

= 1
‖η(q)‖ q̇T

(

[

I −[Rb×]
O [n(x)×]

]T [

LB [LO + LB]−1 LO −LO [LO + LB]−1

− [LO + LB]−1 LO − [LO + LB]−1

] [

I −[Rb×]
O [n(x)×]

]

+

[

O O
O −

(

[Rb×]T [n(x)×]
)

s

]

)

q̇ q̇ ∈ TqS,

where n(x) is the unit normal to O at x, I is a 3×3 identity matrix, O is a 3×3 matrix of zeroes,
and (A)s = 1

2
(AT +A). Two comments are in order here. First, LO+LB≥0, otherwise the two

surfaces would interpenetrate at the contact. In particular, LO+LB is positive definite (thus
invertible) in the generic case where the second-order approximations to the two surfaces
maintain point contact at x. Second, the tangent vector q̇ = (Rb×n(x), n(x)) ∈ TqS is
an eigenvector with a zero eigenvalue of the matrix associated with the curvature form.
This tangent vector corresponds to an instantaneous rotation of B about its contact normal
with O. Thus, in the 3D case CO always possess zero curvature along instantaneous rotation
of B about the contact normal with O.

Bibliographical Notes

The notion of configuration space originated around 1980 during a collaboration between two
MIT doctorate students, assigned to develop one of the first robotic assembly stations [6].
While discussing the automation of the peg-in-a-hole insertion task, they noticed that the
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best approach is to have the robot drag the peg along the surface at an oblique angle rather
then at a vertical angle required for insertion (Figure 2.6). Only when the peg wedges itself
into the hole, a rotational motion aligns the peg with the hole while completing the insertion
task. This approach makes perfect sense if one considers the c-obstacles induced by the edges
forming the hole. The θ slice of the c-obstacles at a vertical angle contains only a thin segment
of collision-free configurations (Figure 2.6(a)). In contrast, the θ slice of the c-obstacles
at an oblique angle contains a notch of collision-free configurations (Figure 2.6(b)). This
observation led to the formulation of c-space as a model for the motions of bodies in contact,
a model that has served as the basis of virtually all motion planning algorithms [1, 2, 4, 5].

Exercises

Exercise 1. Define IRP 3 in terms of lines in IR4, then move to the sphere S3, then to D3.
2. Identify the non-shrinkable loop in θ-space as a loop starting at the origin, moving to the
radius-π sphere, then wrapping through the antipodal point back to the origin. An attempt
to shorten this loop would break it.

Exercise 2. (a) Derive a version of Rodriguez’ equation for planar rigid bodies. (b) Verify
that θ ∈ IR3 ia an eigenvector of R(θ) ∈ SO(3), and x̂ · (R(θ)x̂) = cos(‖θ‖) for any vector
x̂ ∈ IR3 orthogonal to θ. (c) Show that Rodriguez’ formula gives the 2 × 2 orientation
matrix when θ̂ = (0, 0, 1).

Exercise 3–The waiter’s tray maneuver. The manifold SO(3) is topologically equivalent
to the three-dimensional projective space, denoted IRP 3. One way to construct IRP 3 is
to take the unit three-dimensional ball (i.e. the set {v ∈ IR3 : ‖v‖ ≤ 1}), and identify



antipodal points on its bounding sphere. The manifold IRP 3 is path connected, compact,
and orientable. The one-dimensional loops in this manifold belong to two distinct classes—
ones that can be shrunk to a point, and ones that wrap around a “hole” in the manifold.
This non-trivial loop class can be demonstrated via the following tray maneuver. Imagine
a waiter supporting a tray in a horizontal position, with elbow initially pointing downward.
The waiter first rotates the tray horizontally by 360 degrees, while shifting the tray downward
and its elbow upward. Then it continues the tray’s horizontal rotation by additional 360
degrees in the same direction, while shifting the tray upward and its elbow downward to
their original position. (a) Try to execute this maneuver with a loaded tray. (b) Identify the
upper hemisphere of S3 with D3. Recognize that identifying antipodal points on the equator
of the upper hemisphere is equivalent to the procedure for constructing IRP 3. But this is
precisely the periodicity rule of the θ parametrization. 2. When one uses quaternions, the
parametrization of SO(3) is in terms of S3.

Exercise 4. verify that the rigid-body transformation is the general form of an orientation
preserving isometric embedding of IR3. [See Rees, Notes on Geometry]

Exercises 5. (a) Prove that the path connectivity property of a c-obstacle propagates. (b)
Prove that convexity propagates based on the fact that dst(x,O) is a convex function when
O is convex. Recall that a function, f(x), is convex when its epigraph (the set of points on
or above the graph of the function) is a convex set.

Exercise 6. Consider the construction of the c-obstacle boundary in the case when the
boundary of the planar body B is a smooth convex curve, and O is a planar disc of radius
r. Show that the curve traced by B’s origin in FW is: d(s, θ) = x0 − R(θ)

(

β(s) + rJβ′(s)
)

,
where R(θ) ∈ SO(2) B’s orientation matrix.

Solution 6. Let θ0 be a particular orientation of the planar body B. When B traces O’s
perimeter (i.e., slides along the boundary of O) at a fixed orientation θ0, the curve traced
by B’s contact point in FW is: x(s) = R(θ0)b(s) + d(s) for s ∈ IR. The c-obstacle boundary
is the curve traced by B’s origin during this motion: d(s) = x(s) − R(θ0)b(s). Since the
contact normals of O and B are collinear at x(s), O’s center point satisfies the equation:
x0 = x(s)+ rR(θ0)Jβ ′(s), since Jβ ′(s) points into O. Substituting for x(s) in the expression
for d(s) gives: d(s) = x0 − rR(θ0)Jβ′(s) − R(θ0)b(s) = x0 − R(θ0)

(

b(s) + rJβ′(s)
)

.

Exercise 7. (a). Verify that the Jacobian of ϕ(s, θ) =
(

d(s, θ), θ
)

has full rank. From this
one can conclude that it locally parametrizes a smooth surface. (b) Generalize ϕ(s, θ) =
(

d(s, θ), θ
)

to convex and smooth 2D bodies. (c) Use the fact that Lipschitz continuous
functions are piecewise smooth to conclude that the c-obstacles are bounded by piecewise
smooth surfaces. (d) Show that when B and O are smooth convex shapes, the c-obstacle
boundary is a single smooth surface.

Solution 7. We must verify that the tangent vectors ∂
∂s

ϕ(s, θ) and ∂

∂θϕ(s, θ) are linearly
independent and therefore span the tangent plane to CO’s boundary at ϕ(s, θ).

∂

∂s
ϕ(s, θ) =

(

−R(θ)
(

β ′(s) + rJβ ′′(s)
0

)

= −(1 + rκB(s))

(

R(θ)β ′(s)
0

)

,



where we used the fact that Jβ′′(s) is collinear with β ′(s), and that κB(s) = β ′(s) · Jβ ′′(s) is
the curvature of B at β(s).

∂

∂θ
ϕ(s, θ) =

(

−JR(θ)
(

β(s) + rJβ ′(s)
)

1

)

,

where we used the identity R′(θ) = JR(θ). Since κB(s) > 0 for a convex B, the tangent
vectors ∂

∂s
ϕ(s, θ) and ∂

∂θϕ(s, θ) are linearly independent.

Exercise 8. Let B be a convex polygon and O a stationary disc. In this case CO’s boundary
consists of two-dimensional patches meeting along one-dimensional curves. Identify the
possible types of these patches. Write the (s, θ) parametrization of the patch generated by
an edge of B.

Solution 8. There are two types of smooth patches. An edge-patch generated by an edge
of B sliding on O, and a vertex-patch generated by a vertex of B sliding on O. Let O
have a radius r and center x0. Consider now an edge of B having endpoints b1 and b2 and
length L. Let v = (b2 − b1)/L be the edge’s direction. Then β(s) = b1 + sv for 0 ≤ s ≤ L

parametrizes the edge in FB, with β ′(s) = 1. Since the edge can touch O from the outside
at any orientation θ, the parameter θ varies freely in IR. Following the solution approach of
the previous exercise, d(s, θ) = x0 − R(θ)(b1 + sv + rJv) for 0 ≤ s ≤ L and θ ∈ IR. Note
that d(s, θ) is linear in s, implying that the patch ϕ(s, θ) = (d(s, θ), θ) is a ruled surface in
this case.

Exercise 9. Compute the Jacobian, DXb(q) = dXbq
dq

, in Equation (2.2 for the case of 3-
dimensional objects. Obtain the equivalent formula for 2-dimensional objects as a special
case of the 3D formula, by embedding the planar environment in a horizontal plane passing
through the origin in three-dimensions.

Exercise 10. Consider the c-obstacle normal η(q) in Equation (2.3) for the case in which
the origin of the body fixed reference frame, FB, lies along the contact normal. Verify that
the tangent plane to CO at q is vertical in this case, implying that an instantaneous rotation
of B about FB’s origin is tangent to CO’s boundary at q.

Appendix: Details of Proofs

This appendix contains a derivation of the c-obstacle curvature formula in the 2D case.

Lemma 2.3.1. Let q(t) be a c-space trajectory on S, and let x(t) be B’s contact point with
O along q(t). Then the contact point velocity is given by

ẋ =
κB

κB+κO
[I JR(θ)bc] q̇ q̇ = d

dt
q(t),

where κB and κO are the curvatures of B and O at x(t), and bc is B’s center of curvature at

x(t) expressed in FB; I is a 2 × 2 identity matrix and J =
»

0 −1
1 0

–

.

Proof: Let q(t) be a curve on S. As B moves along q(t), the contact point satisfies the
formula: x(t) = X(q(t), d(t)) = R(θ(t))b(t) + d(t). Taking the time derivative of both sides



gives ẋ = DXb(q)q̇ + R(θ)ḃ. In order to obtain an expression for ẋ as a function of q̇, we
need a second equation relating (ẋ, ḃ) to q̇. Since B maintains continuous contact with O
along q(t), the outward unit normal to O’s boundary at x, n(x), must match the inward
unit normal to B at x. Let n̄(b) denote the outward unit normal to B at b, expressed in FB.
Then −R(θ)n̄(b) is the direction of B’s inward unit normal at x (in world reference frame
coordinates), and therefore n(x(t)) = −R(θ(t))n̄(b(t)) along q(t). Taking the time derivative
of both sides (and suppressing t) gives

d
dtn(x) = −

(

JR(θ)n̄(b)θ̇ + R(θ) d
dt n̄(b)

)

,

where we used the formula Ṙ(θ) = JR(θ)θ̇. Based on the definition of curvature,

κOẋ = −
(

JR(θ)n̄(b)θ̇ + κBR(θ)ḃ
)

.

Substituting R(θ)ḃ = ẋ − DXb(q)q̇ in the latter equation gives

(κB + κO)ẋ = κBDXb(q)q̇ − JR(θ)n̄(b)θ̇.

Substituting DXb(q)q̇ = ḋ + JRbθ̇ and pulling κB as a common factor gives

(κB + κO)ẋ = κB

{

ḋ − JR
(

b − rBn̄(b)
)

θ̇
}

.

The term b − rBn̄(b) is the position of B’s center-of-curvature in FB. Substituting bc =
b − rBn̄(b) gives ẋ = κB/(κB+κO) [I JR(θ)bc] q̇, where q̇ = (ḋ, θ̇). �

The next lemma gives the formula for the c-obstacle curvature in the 2D case.

Lemma 2.3.2. Let S be the boundary of CO, let q ∈ S, and let η(q) be the normal to S
at q. The curvature form of S at q is given by

κ(q, q̇) = 1
κB+κO

q̇T

[

κBκOI κBκOJRbc

κBκO(JRbc)
T (κORb−n(x))T (κBRb+n(x))

]

q̇ q̇ ∈ TqS,

where x=X(q, b) is B’s contact point with O, κB and κO are the curvatures of B and O at
x, n(x) is the contact normal at x, and bc is B’s center of curvature at x expressed in FB;

I is a 2 × 2 identity matrix and J =
»

0 −1
1 0

–

.

Proof: Let q(t) be a curve on S such that q(0) = q and d
dt

∣

∣

t=0
q(t) = q̇. Based on the

definition of κ(q, q̇), we have to compute the derivative

d

dt

∣

∣

∣

∣

t=0

η̂(q(t)) =
d

dt

∣

∣

∣

∣

t=0

1

‖η(q(t))‖η(q(t)) =
1

‖η(q)‖
[

I−η̂(q)η̂(q)T
] d

dt

∣

∣

∣

∣

t=0

η(q(t)).

Since
[

I − η̂(q)η̂(q)T
]

q̇ = q̇ on TqS, the curvature form can be equivalently written as

κ(q, q̇) =
1

‖η(q)‖ q̇ · d

dt

∣

∣

∣

∣

t=0

η(q(t)) q̇ ∈ TqS.



Recall now that η(q) = DXT
b (q)n(x), where DXT

b (q) = [I JRb]T and n(x) is the unit normal
to O at x. Thus we have to compute the derivative

d

dt

∣

∣

∣

∣

t=0

η(q(t)) = DXT
b (q)

d

dt

∣

∣

∣

∣

t=0

n(x(t)) +

(

d

dt

∣

∣

∣

∣

t=0

DXT
b (q(t))

)

n(x).

Since B maintains continuous contact with O along q(t), the contact x(t) moves along O’s
boundary, and d

dt

∣

∣

t=0
n(x(t)) = κOẋ in the first summand. Substituting ẋ =

κB
κ
B

+κ
O

[I JRbc]q̇

according to the contact velocity formula gives

DXT
b (q)

d

dt

∣

∣

∣

∣

t=0

n(x(t)) =
κBκO
κB+κO

[

I
(JRb)T

]

[I JRbc] q̇ =
κBκO
κB+κO

[

I JRbc

(JRb)T b · bc

]

q̇,

where we used the identities RT R = JT J = I. In the second summand, d
dt

∣

∣

t=0
DXT

b (q) =
[

O J d
dt

∣

∣

t=0
(Rb)

]T
, where O is a 2×2 matrix of zeroes. Since B maintains continuous contact

with O along q(t), the contact point satisfies the equation: x(t)=R(θ(t))b(t)+d(t). Taking
the time derivative of both sides gives ẋ = d

dt
(Rb) + ḋ. Substituting ẋ =

κB
κB+κO

[I JRbc]q̇

according to the contact velocity formula gives

d

dt
(Rb) =

κB
κB+κO

[I JRbc] q̇ − ḋ = 1
κB+κO

[−κOI κBJRbc] q̇.

The second summand is thus

(

d
dt

∣

∣

t=0
DXT

b (q(t))
)

n(x)= 1
κB+κO

[

O
nT (x)J [−κOI κBJRbc] q̇

]

= −1
κB+κO

[

O ~0
κOnT (x)J κBnT (x)Rbc

]

q̇,

where we used the identity J2 = −I. Substituting for the two summands in the derivative
d
dt

∣

∣

t=0
η(q(t)) gives

d
dt

∣

∣

t=0
η(q(t) = 1

κB+κO

[

O ~0
−κOnT (x)J −κBnT (x)Rbc

]

q̇ +
κBκO
κB+κO

[

I JRbc

(JRb)T b · bc

]

q̇

= 1
κB+κO

[

κBκOI κBκOJRbc

−κOnT (x)J + κBκO(JRb)T −κBnT (x)Rbc + κBκOb · bc

]

q̇.

The expression on the lower left simplifies as follows. Let n̄(b) denote the outward unit
normal to B’s boundary at b, expressed in FB. Then n(x) = −R(θ)n̄(b), and we have

−κOnT (x)J + κBκO(JRb)T = κBκO

(

−rBn̄(b) + b)T RT JT = κBκO(JRbc)
T ,

where we substituted bc = b− rBn̄(b) for B’s center of curvature at x. The expression on the
lower right simplifies as follows

−κBnT (x)Rbc + κBκOb · bc = (κORb − n(x))T (κBRbc) = (κORb − n(x))T (κBRb + n(x)),

where we substituted κBRbc = κBR(b − rBn̄(b)) = κBRb + n(x). Substituting the simplified
terms in the derivative d

dt

∣

∣

t=0
η(q(t)) gives

d

dt

∣

∣

∣

∣

t=0

η(q(t) = 1
κB+κO

[

κBκOI κBκOJRbc

κBκO(JRbc)
T (κORb−n(x))T (κBRb+n(x))

]

q̇.

Finally, pre-multiplying by 1/‖η(q)‖ and q̇ gives the c-obstacle curvature form. �
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dst(x,O)

O={ x : x < 0 }

f(x)

Figure 7: (a) The minimal distance function dst(x,O) is piecewise smooth and Lipschitz
continuous. (b) A piecewise smooth function which is non-Lipschitz at x = 0.

Appendix: An Introduction to Non-Smooth Analysis

This appendix introduces some useful non-smooth analysis tools concerning Lipschitz con-
tinuous functions.

Definition 3 (Lipschitz Function). A continuous function f(x) : IRm → IR is Lipschitz
continuous at x if there exists a constant k > 0 such that |f(x1) − f(x2)| ≤ k‖x1 − x2‖ for
all x1 and x2 in a neighborhood of x. A continuous function f(x) : IRm → IRn is Lipschitz
continuous at x if ‖f(x1) − f(x2)‖ ≤ k‖x1 − x2‖ in a neighborhood of x.

In both cases k is a Lipschitz constant for f at x. According to Rademacher’s Theorem from
functional analysis, all Lipschitz continuous functions are piecewise differentiable. Lipschitz
continuous functions are essentially piecewise smooth functions whose slope is bounded away
from infinity (see Figure 7).

Example: Let us verify that f(x) = |x| is Lipschitz continuous. Using the identity
|x| =

√
x2, one can write |f(x1) − f(x2)| =

√

(|x1| − |x2|)2 =
√

|x1|2 − 2|x1||x2| + |x2|2 ≤
√

x2
1 − 2x1x2 + x2

2 = |x1 − x2|. Thus f(x) = |x| is Lipschitz continuous with k = 1.

Some useful properties of Lipschitz continuous are as follows.

1. A differentiable function f(x) is automatically Lipschitz continuous, with k = ‖∇f(x)‖.
Conversely, if f(x) is Lipschitz continuous and ∂f(x) contains a single vector, then f is
differentiable at x and ∂f(x) = ∇f(x).

2. The composition of two Lipschitz continuous functions is Lipschitz continuous. To see
this fact, let g(y) : IRn → IR and h(x) : IRm → IRn be Lipschitz continuous functions
with Lipschitz constants kg and kh, and let f(x) = g(h(x)). Then

|f(x1) − f(x2)| = |g(h(x1)) − g(h(x2))| ≤ kg‖h(x1) − h(x2)‖ ≤ kgkh‖x1 − x2‖,

thus proving that f(x) = g(h(x)) is Lipschitz continuous.

3. Let F (x) = mint∈T {ft(x)} be the pointwise minimum over a parametrized family of
Lipschitz continuous functions, where T is a discrete or a continuous set. Then F (x)



is Lipschitz continuous. To see this fact, let kt be the Lipschitz constant of ft(x) for
t ∈ T . Let F (x1) = ft1(x) and let F (x2) = ft2(x) for some t1, t2 ∈ T . We have
to show that |F (x1) − F (x2)| = |ft1(x1) − ft2(x2)| ≤ k‖x1 − x2‖ for some k > 0.
There are two cases to consider. If ft1(x1) − ft2(x2) ≥ 0, then |ft1(x1) − ft2(x2)| ≤
|ft2(x1) − ft2(x2)| ≤ kt2‖x1 − x2‖ (since ft1(x1) ≤ ft2(x1)). If ft1(x1) − ft2(x2) < 0,
then |ft2(x2)− ft1(x1)| ≤ |ft1(x2)− ft1(x1)| ≤ kt1‖x1 − x2‖ (since ft2(x2) ≤ ft1(x2)). It
follows that F (x) is Lipschitz continuous with k = max{kt1 , kt2}.

Next we define the generalized gradient of a Lipschitz continuous function.

Definition 4 (Generalized Gradient). Let f(x) : IRm → IR be a Lipschitz continuous func-
tion. Let x ∈ IRm be surrounded by open sets S1 . . .SN containing x on their common
boundary, such that f is differentiable on each of these sets. Then the generalized gradient
of f at x, denoted ∂f(x), is given by

∂f(x) =

N
∑

i=1

λi lim
xj→x,xj∈Si

∇f(xj) 0 ≤ λi ≤ 1 for i = 1 . . .N and
∑N

i=1 λi = 1.

(i.e. ∂f(x) is the convex combination of the limits limxj→x ∇f(xj), each taken along a
sequence {xj} approaching x inside the set Si for i = 1 . . .N).

Example: Let us compute the generalized gradient of f(x) = |x|. Clearly f ′(x) = −1 for
x < 0 and f ′(x) = 1 for x > 0. Based on the definition, ∂f(0) is the convex combination of
−1 and 1, giving the interval [−1, 1]. We can thus write

∂f(x) =







−1 x < 0
[−1, 1] x = 0
+1 x > 0

for f(x) = |x|.

Let bdy(O) denote the boundary of a fixed set O. The following lemma specifies the gener-
alized gradient of the minimal distance function, dst(x,O), at a point x ∈ bdy(O).

Lemma .0.3. Let O be a closed set having a non-empty interior and a smooth boundary.
The function dst(x,O) = min

y∈O{‖x − y‖} is Lipschitz continuous in x, and at x∈bdy(O)
its generalized gradient is given by

∂dst(x,O) = s · n(x) for 0 ≤ s ≤ 1,

where n(x) is the outward unit normal to the boundary of O at x.

Proof: We first verify that dst(x,O) is Lipschitz continuous in x. Let x1 and x2 be
any two points in a neighborhood of x. We have to show that |dst(x1,O) − dst(x2,O)| ≤
k‖x1 − x2‖ for some k > 0. Let x∗

i ∈ O minimize the distance of xi from O, so that
dst(xi,O) = ‖xi − x∗

i ‖ for i = 1, 2. Since dst(x1,O) is the minimal distance of x1 from O and
x∗

2 ∈ O, dst(x1,O) ≤ ‖x1 − x∗
2‖. But ‖x1 − x∗

2‖ = ‖(x1 − x2) − (x∗
2 − x2)‖ ≤ ‖x1 − x2‖ +



‖x∗
2 − x2‖. Since dst(x2,O) = ‖x2 − x∗

2‖, we obtain that dst(x1,O) ≤ ‖x1 − x2‖+dst(x2,O).
Equivalently, dst(x1,O) − dst(x2,O) ≤ ‖x1 − x2‖. Using the same argument with the roles
of x1 and x2 exchanged gives dst(x2,O) − dst(x1,O) ≤ ‖x1 − x2‖. Hence |dst(x1,O) −
dst(x2,O)| ≤ ‖x1 − x2‖, implying that dst(x,O) is Lipschitz continuous with k = 1.

The generalized gradient of dst(x,O) at x ∈ bdy(O) is the convex combination of the
limits limxj→x ∇dst(xj ,O), each taken along a sequence {xj} approaching x through dif-
ferentiable points of dst(x,O). Since dst(x,O) is identically zero in the interior of O,
limxj→x ∇dst(xj ,O) = ~0 along along any sequence {xj} approaching x from the interior
of O. Next consider a sequence {xj} approaching x from the exterior of O. Since the bound-
ary of O is smooth, it has a unit outward normal, denoted n(y), which varies smoothly
with y ∈ bdy(O). The collection of segments y + sn(y) such that 0 ≤ s ≤ δ for some
small δ > 0 forms an exterior neighborhood of O, denoted N . Any point in N has
a unique closest point on bdy(O). When a sequence {xj} approaches x from the exte-
rior of O, it must eventually lie within N . At each point xj ∈ N , the minimal distance
dst(xj ,O) = miny∈O{‖xj − y‖} is attained at a unique point yj ∈ bdy(O). Since dst(xj ,O)

is a minimum over a parametrized family of functions, ∂dst(xj ,O) = ∇‖x − yj‖ evaluated at
x=xj . Thus ∂dst(xj ,O) = (xj −yj)/‖xj−yj‖, which is a unit vector pointing from yj toward
xj . Since ∂dst(xj ,O) contains a single vector, dst(x,O) is differentiable at x = xj , and
∂dst(xj,O) = ∇dst(xj ,O). In particular, limxj→x ∇dst(xj ,O) = limxj→x n(xj) = n(x), where
n(x) is the unit outward normal to O at x. Hence ∂dst(x,O) is the convex combination of
0 and n(x), which gives the line segment s · n(x) for 0 ≤ s ≤ 1. �

Bibliographical Notes

The generalized gradient has its origin with the notion of subgradient of convex analysis [10].
The generalized gradient is discussed in Clarke’s Optimization and Nonsmooth Analysis [3],
which also provides various tools for its computation.
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