Chapter 2

The Configuration Space of a Rigid
Body

The basic problem to be considered in this chapter consists of a freely moving rigid body B
surrounded by stationary rigid bodies O ... O;. The stationary bodies represent fingertips,
fixturing elements, or terrain segments supporting B against gravity. The body B represents
the object begin grasped, a workpiece, or the rigidified multi-legged vehicle. This chapter
introduces the notion of the rigid-body configuration space, or c-space, which is essential
for analyzing the mobility and stability of B with respect to its surrounding bodies. The
chapter begins with a parametrization of B’s c-space in terms of hybrid coordinates. Con-
figuration space obstacles (c-obstacles) are then introduced, and several of their properties
are described. The chapter proceeds to describe the first and second-order geometry of the
c-space obstacles, as this geometry plays a key role in subsequent chapters. Finally, the
notion of generalized forces or wrenches is introduced in the context of configuration space.
Rigid-Body

2.1 The Notion of Configuration Space

The points of the rigid body B retain their relative distance as the body moves in the environ-
ment, and B’s configuration specifies the stationary state of the object in the environment.
Equivalently, the position of each of B’s constituent points can be determined from its con-
figuration. The specification of B’s configuration requires a selection of two frames, depicted
in Figure 2.1. The first is a fixed world frame, denoted Fy,, which establishes a coordinate
system for the environment, or workspace, in which B moves. We assume that workspace is
modeled as an n-dimensional Euclidean space, IR", where n=2 or 3. The second is a body
frame, denoted Fp, which is rigidly attached to B. The configuration of B can be specified
by a vector d € IR" describing the position of Fpg’s origin with respect to the origin of Fy,
and an rotation matriz, R € IR"™*", whose columns describe the relative orientation of the
axes of Fp with respect to those of Fy,. The collection of nxn orientation matrices forms a
group under matrix multiplication, termed the special orthogonal group, and denoted by the

symbol SO(n).
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configuration
space (d,R)

Figure 2.1: The physical geometry underlying the c-space representation of a 3D body B.
Think of B’s configuration as a placement of B in its workspace.

Characterization of SO(n). The special orthogonal group of n x n orientation matrices
is given by
SO(m)={Re R™" :R"R=1 and det(R)=1},

where [ is an n X n identity matrix.

The characterization of SO(n) provides two important insights. First, every rotation matrix
acts on vectors v € IR" so as to preserve their length, since ||Rv|| = (v RTRvT)Y2 = ||v|.
Second, SO(n) is a compact smooth manifold of dimension in(n—1) in the space IR™*". In
particular, SO(2) is a one-dimensional loop in the space of 2 x 2 matrices, while SO(3) is a
compact three-dimensional manifold in the space of 3 x 3 matrices.

Definition 1 (Configuration Space). The configuration space of B, denoted C, is the smooth
manifold C = IR"x SO(n), consisting of pairs (d, R) such that d € IR" and R € SO(n).

The dimension of C is the sum: m=n + in(n—1) = 1n(n + 1), giving m =3 when B is a
2-dimensional (2D) body and m=6 when B is a 3-dimensional (3D) body. We now introduce
a parametrization of C in terms of hybrid coordinates [7]. This parametrization allows us to
locally represente C as a Euclidean space IR™, with some periodicity rules for the coordinates

representing the orientation matrices.

We first introduce coordinates for SO(n). The group SO(n) is an important instance of a
Lie group.! A standard means for parametrizing Lie groups is via exponential coordinates:

R(O) = 0~

where the matrix exponential can be formally defined via the series: exp(A) = I+ A+ %AQ +
.-+, and where [@x] is a skew-symmetric matrix®.

Lie groups are matrix groups possessing a smooth manifold structure.
2These skew-symmetric matrices form the Lie Algebra of the Lie group.
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while the exponential coordinates for SO(3) are a vector 8 € IR* (since SO(3) is a three-
dimensional manifold). The exponential coordinates are constructed in two stages.

Exponential Coordinates for SO(n). The exponential coordinate for SO(2) is a scalar
6 (since SO(2) is a one-dimensional manifold). The skew symmetric matrix in the matrix

exponential representation of SO(2) is the 2 x 2 matrix [#x] = 6.J where J = | { !

Consequently, the 2x2 orientation rotation matrices are globally parametrized by the formula

R(@)z [cos@ —sin@] 0chR

sinf cosf

where 6 is the relative orientation of Fp relative to Fy,, measured using the right-hand-
rule (which measures angles in the counterclockwise direction around the upward-pointing
normal to the plane).

For 3 x 3 rotation matrices in SO(3), the skew symmetric matrix [@x] has a physical inter-
pretation as a cross-product matrix: [@x]|v = 6 x v for any vector v € IR®. The direction
of the vector @ physically corresponds to the axis of rotation, and the norm of the vector,
||6||, corresponds to the angle of rotation® about the axis of rotation. For SO(3), it can be
shown that the matrix exponential formula reduces to Rodriguez’ Formula:

R(6) = I +sin(||0])[6x] + (1—cos(||6]))[6x])* 6 € R?,

where [ is a 3 X 3 identity matrix and [6x] is the cross-product matrix of 8 = 6/||6||. In
Rodrigez’ formula @ and ||0]| are the axis and angle of rotation of R(0), measured according
to the right-hand rule.

The parametrization of SO(2) is periodic in 27, with each 27 interval parametrizing the
entire SO(2). The parametrization of SO(3) in terms of @ satisfies the following periodicity
rule. The origin of @-space is mapped by R(6) to the identity matrix I. Similarly, all

concentric spheres of radius [0 = 27, 4, ... are mapped to /. Each pair of antipodal points
on the sphere of radius [|6]| =7 is mapped to the same matrix R, since R(7r0) = R(—70)
for all 8. Similarly, antipodal points on the spheres of radius ||@] = 3, 57, ... are identified.

Consider now a path in @-space from the origin to the sphere of radius 7 along a fixed
direction 6. This path represents a rotation of B about 0 by an angle which increases from
zero to m. Moving next to the antipodal point —7r0 rotation of B from 7 to 2w continues
on a path which moves along —6 back to the origin. Since 6 can have any direction, the
entire manifold SO(3) is parametrized by the ball with center at the origin and radius ,
with antipodal points on its bounding sphere identified.

Definition 2 (Hybrid Coordinates). When B is a 2D body the hybrid coordinates for its
c-space are ¢ = (d,0) € IR* x IR. When B is a 3D body, the hybrid coordinates® for its c-space
are ¢ = (d,0) € IR* x IR®.

3 Buler’s Theorem states that every rigid body rotation corresponds is equivalent to a rotation about a
fixed axis.

4Formally, the hybrid coordinates are IR™ x se(n), where se(n) is the Lie algebra of SO(n). However,
se(n) is isomorphic to IR"™, and so IR" is used for simplicity
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- B’s c-space
trajectory

dy

(b) dx
Figure 2.2: (a) Hybrid coordinates q = (d,, d,,0) for B’s c-space. (b) A c-space trajectory
representing B’s physical motion.

When B is a 2D body its c-space is simply IR® in hybrid coordinates, partitioned into 27
layers along the 6 axis (see Figure 2.2). Each 27 layer provides a full parametrization of
c-space. Hence a path ¢(t) can freely move between layers, or it can remain in a particular
layer by wrapping through its bounding planes. When B is a 3D body its c-space is simply IR°
in hybrid coordinates, with the 8 coordinates partitioned into a central ball and concentric
shells each having a radius/thickness of m. Here, too, a path ¢(t) can freely move between
neighboring shells, or it can remain in the inner ball by wrapping through antipodal points
on its bounding sphere.

To summarize, c-space allows us to model the physical motions of B as trajectories, ¢(t), of
a point in IR™, where m = 3 or 6. Before we proceed to fill this space with forbidden regions
representing the stationary bodies, let us review the notion of rigid-body transformation.

The rigid-body transformation. As B moves along a c-space trajectory ¢(t), the position
of its points with respect to the world frame Fyy is specified as follows. Let b denote points of
B expressed in its body frame Fp, and let x denote points expressed in Fy (Figure 2.2(a)).
The rigid-body transformation, denoted X(q,b), gives the world position of B’s points at a
configuration g,

(d,0)€ IR’ be B (2D case)

RO +d ¢
R q=(d,0)€ R’ beB (3D case).

= X(q.b) 2 { (0)b+ d

The notation Xj(q) will specify the rigid-body transformation such that the point b € B is
held fixed. In this case X3(q) gives the world position of the fixed point b as a function of q.
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Figure 2.3: The c-obstacle induced by a stationary disc, shown for two choices of Fp’s origin:
(a) at the ellipse’s center, and (b) at the ellipse’s tip.

2.2 Configuration Space Obstacles

From the perspective of B, the rigid stationary bodies O ... Oj form obstacles which con-
strain its possible motions. Since it is physically impossible for two different rigid bodies
to occupy the same space, the stationary bodies induce forbidden regions in B’s c-space,
called c-obstacles. Let B(q) denote the set of physical points occupied by B when it is at a
configuration ¢, and let O be one of the stationary bodies. The c-obstacle induced by O,
denoted CQO, is the set of configurations ¢ at which B(q) intersects O,

co 2 {¢ge R™:B(qg)NO # 0} where m =3 or 6.

When B is an n-dimensional body, the c-obstacle CO is an m-dimensional set in the ambient
c-space IR™ even when O is a point obstacle. The boundary of CO is an (m—1)-dimensional
set, consisting of configurations at which B touches O from the outside. A curve on CO’s
boundary represents a motion of B which maintains continuous contact with O. In planar
environments one can conceptually construct the boundary of CO as follows. First one fixes
the orientation of B to a particular orientation 6. Then one moves B along the perimeter
of O with this fixed orientation, making sure that B maintains continuous contact with O.
The trace of B’s origin during this circumnavigation forms a closed curve which is precisely
the boundary of the fixed-6 slice of CO. When this process is repeated for all 8, the resulting
stack of loops forms the c-obstacle boundary.

Example 1. Figure 2.3(a) shows an ellipse B moving in a planar environment populated
by a stationary disc O. The c-obstacle induced by O is depicted in Figure 2.3(b) for two
choices of Fp’s origin, at the ellipse’s center and at the tip of its major axis. While the
two c-obstacles differ in their geometric shape (i.e. surface normal and curvature), they are
topologically equivalent. This observation holds true under any choice of Fy and Fp.

The c-obstacle distance function. An analytic description of the c-obstacle can be
constructed as follows. Let dst(z, O) denote the minimal distance of a point = from a fixed
set O, given by dst(z, O) = minyeO{Hx —y||}. The minimal distance between B(gq) and O,
denoted d(q), is defined by

d(g) £ min {dst(z, O)}:Zrelilrgl{dst(X(q,b),O)},

zeB(q)

where © = X (¢,b) is the rigid-body transformation of the point b € B when B lies at
configuration ¢. Note that d(q) is strictly positive outside CO and is identically zero inside
CQO. Hence the c-obstacle CO is described by the inequality,

CO={qe R™:d(q) <0}

One can equivalently write CO = {q € IR™ : d(q) = 0}, but the above formulation anticipates
later chapters where c-space is used to analyze the motions of a quasi-rigid body.
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A detailed discussion of the c-obstacles can be found in textbooks dedicated to robot motion
planning [1, 2, 4, 5]. The following list summarizes some of their key properties °.

1. Compactness and connectivity propagate. When B is compact and path con-
nected, any compact and path connected obstacle O induces a compact and path
connected c-obstacle CO.

2. Union propagates. When an obstacle O is a union of two sets, O = O; U O,, its
c-obstacle is a union of the c-obstacles corresponding to the individual sets, CO =
CO,UCO:s.

3. Convexity propagates. Recall that a set S C IR" is convez if every pair of points in
S can be connected by a line segment lying wholly in §. When O and B are convex
bodies, each fixed-orientation slice of CO is a convex set.

4. Polygonality propagates. When B and O are polygonal bodies, each fixed-orientation
slice of CO is a two-dimensional polygonal set. When B and O are polyhedral bodies,
each fixed-orientation slice of CO is a three-dimensional polyhedral set.

A popular method for computing the explicit shape of the c-obstacles for planar bodies can
be summarized as follows. The method assumes that B and O are convex polygons. In this
case each fixed-6 slice of CO, denoted CO|,, is also a convex polygon. The vertices of CO|,
correspond to configurations at which a vertex of B (having a fixed orientation 6) touches
a vertex of O, such that the bodies’ interiors are disjoint. The vertices on the boundary of
CO|, can be computed by a simple algorithm which merges the vertices of B and O on a
common unit circle [2, 4].

When B is a smooth convex body and O is a disc, one can explicitly parametrize the boundary
of CO as follows. First note that as B traces the perimeter of O with a fixed orientation,
the contact point monotonically traces the entire perimeter of B. Also note that having B
trace with a fixed orientation the perimeter of O in Fy is equivalent to having O trace
the perimeter of the stationary B in Fg. Based on these observations, let (3(s) for s € IR
be a parametrization of B’s perimeter in Fg, such that the tangent ('(s) is a unit vector.

Let J3'(s) be the unit outward normal to B, where J = { ’ 701 } Let r be the radius

of disc O, and let xg be the position of its center in Fy,. Then during a motion of O
along B’s perimeter, the curve traced by O’s center in Fg is: 3(s) + rJ3'(s) for s € IR.
Based on a simple calculation (see Exercise 8), the curve traced by B’s origin in Fy is:
d(s,0) = zo — R(0)(B(s) + rJB'(s)), where R(6) is B’s fixed orientation matrix. When 6
varies freely in IR, the function ¢(s, )= (d(s, 0), «9) : IR* — IR® provides a parametrization
of CO’s boundary in term of s and 6. The c-obstacles depicted in Figure 2.3 were generated
using this technique.

Example: Obtain the c-obstacle parametrization for an ellipse obstacle, described
by (z—z0)"P(x—x9) <1 where P >0. At the contact point z(s): P(z(s)—z) =

5The term “propagate in this list implies that the property in the n-dimensional Euclidean workspace
propagates, or is conserved, under the mapping to configuration space.n
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—AR(0y)J3 (s) for some A >0. Multiplying both sides by P~Y2 gives: PY%(z(s)—
7o) = —AP7Y2R(0,)J3 (s). Taking the norm of both sides gives:
1

1= (z(s) — 20) " P(x(s) — mo) = A|[P™V2R(00)J B (s)|| = A(s) = |P~Y2R(00)J 3 (s)|

Substituting for A(s) in the contact-normals equation gives
P(x(s) — x0) = —A(s)R(0) B () = x(s) = xg — A(s) P R(6)J 3 (s).

On the other hand, z(s) = R(Ao)b(s)+d(s). Substituting for z(s) and solving for
d(s) gives

d(s,0) =x(s) — R(0)b(s) = xo — A(s) P~ R(6)J3'(s) — R(6)b(s)
=z — R(0) (b(s) + \(s)P1JG'(s)),

where  is now freely varying in IR. Note that b(s)+A(s)P'J3(s) is the curve
traced by O’s center in Fp (what about (O’s orientation?)

The c-obstacle boundary is generally a piecewise smooth surface in the 2D case. For instance,
when B is a convex polygon and O is a disc, CO’s boundary consists of two types of smooth
two-dimensional “patches” meeting along one-dimensional curves. An edge-patch generated
by an edge of B sliding on O, and a vertex-patch generated by a vertex of B sliding on O.
The boundary of CO is locally smooth at any configuration at which B touches O at a single
point, such that the two bodies are smooth in the vicinity of the contact. In particular, the
entire boundary of CO is smooth when B and O are smooth convex bodies (see exercise).
Similar observations hold for the five-dimensional boundary of CO in the 3D case.

2.3 The C-Obstacles 1’st and 2’nd-Order Geometry

When B is contacted by stationary finger bodies Oy, ..., Oy, its configuration ¢ lies on the
boundary of each c-obstacle CO; for i = 1...k. We shall see in Chapter 4 that the free
motions of B are determined in this case by the first and second-order geometry of the c-
obstacle boundaries i.e., by the c-obstacles’ normal and curvature. Let us now focus on a
particular stationary body O, and derive formulas for the normal and curvature of its c-
obstacle boundary, denoted bdy(CO). We shall assume that B touches O at a single point,
such that the two bodies have smooth boundaries in the vicinity of the contact. We first
obtain a formula for the c-obstacle normal, then obtain a formula for its curvature.

2.3.1 The C-Obstacle Normal

By construction CO = {q € R™ : d(q) < 0}. If d(q) would have been differentiable at
q € bdy(CO), its gradient Vd(q) would be collinear with the c-obstacle outward normal
at ¢. But d(q) is identically zero inside CO and is monotonically increasing away from CO,
implying that it is non-differentiable at ¢ € bdy(CO) However, d(q) is Lipschitz continuous,



