Chapter 2

The Configuration Space of a Rigid Body

The basic problem to be considered in this chapter consists of a freely moving rigid body \mathcal{B} surrounded by stationary rigid bodies $\mathcal{O}_1 \dots \mathcal{O}_k$. The stationary bodies represent fingertips, fixturing elements, or terrain segments supporting \mathcal{B} against gravity. The body \mathcal{B} represents the object begin grasped, a workpiece, or the rigidified multi-legged vehicle. This chapter introduces the notion of the rigid-body configuration space, or *c-space*, which is essential for analyzing the mobility and stability of \mathcal{B} with respect to its surrounding bodies. The chapter begins with a parametrization of \mathcal{B} 's c-space in terms of hybrid coordinates. Configuration space obstacles (c-obstacles) are then introduced, and several of their properties are described. The chapter proceeds to describe the first and second-order geometry of the c-space obstacles, as this geometry plays a key role in subsequent chapters. Finally, the notion of generalized forces or wrenches is introduced in the context of configuration space. Rigid-Body

2.1 The Notion of Configuration Space

The points of the rigid body \mathcal{B} retain their relative distance as the body moves in the environment, and \mathcal{B} 's configuration specifies the stationary state of the object in the environment. Equivalently, the position of each of \mathcal{B} 's constituent points can be determined from its configuration. The specification of \mathcal{B} 's configuration requires a selection of two frames, depicted in Figure 2.1. The first is a fixed world frame, denoted \mathcal{F}_W , which establishes a coordinate system for the environment, or workspace, in which \mathcal{B} moves. We assume that workspace is modeled as an n-dimensional Euclidean space, \mathbb{R}^n , where n=2 or 3. The second is a body frame, denoted \mathcal{F}_B , which is rigidly attached to \mathcal{B} . The configuration of \mathcal{B} can be specified by a vector $d \in \mathbb{R}^n$ describing the position of \mathcal{F}_B 's origin with respect to the origin of \mathcal{F}_W , and an rotation matrix, $R \in \mathbb{R}^{n \times n}$, whose columns describe the relative orientation of the axes of \mathcal{F}_B with respect to those of \mathcal{F}_W . The collection of $n \times n$ orientation matrices forms a group under matrix multiplication, termed the special orthogonal group, and denoted by the symbol SO(n).

Figure 2.1: The physical geometry underlying the c-space representation of a 3D body \mathcal{B} . Think of \mathcal{B} 's configuration as a *placement* of \mathcal{B} in its workspace.

Characterization of SO(n). The special orthogonal group of $n \times n$ orientation matrices is given by

$$SO(n) = \{ R \in \mathbb{R}^{n \times n} : R^T R = I \quad \text{and} \quad \det(R) = 1 \},\$$

where I is an $n \times n$ identity matrix.

The characterization of SO(n) provides two important insights. First, every rotation matrix acts on vectors $v \in \mathbb{R}^n$ so as to preserve their length, since $||Rv|| = (v^T R^T R v^T)^{1/2} = ||v||$. Second, SO(n) is a compact smooth manifold of dimension $\frac{1}{2}n(n-1)$ in the space $\mathbb{R}^{n \times n}$. In particular, SO(2) is a one-dimensional loop in the space of 2×2 matrices, while SO(3) is a compact three-dimensional manifold in the space of 3×3 matrices.

Definition 1 (Configuration Space). The configuration space of \mathcal{B} , denoted \mathcal{C} , is the smooth manifold $\mathcal{C} = \mathbb{R}^n \times SO(n)$, consisting of pairs (d, R) such that $d \in \mathbb{R}^n$ and $R \in SO(n)$.

The dimension of C is the sum: $m = n + \frac{1}{2}n(n-1) = \frac{1}{2}n(n+1)$, giving m = 3 when \mathcal{B} is a 2-dimensional (2D) body and m = 6 when \mathcal{B} is a 3-dimensional (3D) body. We now introduce a parametrization of C in terms of *hybrid coordinates* [7]. This parametrization allows us to locally represente C as a Euclidean space \mathbb{R}^m , with some periodicity rules for the coordinates representing the orientation matrices.

We first introduce coordinates for SO(n). The group SO(n) is an important instance of a *Lie group.*¹ A standard means for parametrizing Lie groups is via *exponential coordinates*:

$$R(\boldsymbol{\theta}) = e^{[\boldsymbol{\theta} \times]}$$

where the matrix exponential can be formally defined via the series: $\exp(A) = I + A + \frac{1}{2!}A^2 + \cdots$, and where $[\boldsymbol{\theta} \times]$ is a skew-symmetric matrix².

 $^{^1\}mathrm{Lie}$ groups are matrix groups possessing a smooth manifold structure.

²These skew-symmetric matrices form the *Lie Algebra* of the Lie group.

while the exponential coordinates for SO(3) are a vector $\boldsymbol{\theta} \in \mathbb{R}^3$ (since SO(3) is a threedimensional manifold). The exponential coordinates are constructed in two stages.

Exponential Coordinates for SO(n). The exponential coordinate for SO(2) is a scalar θ (since SO(2) is a one-dimensional manifold). The skew symmetric matrix in the matrix exponential representation of SO(2) is the 2 × 2 matrix $[\theta \times] = \theta J$ where $J = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Consequently, the 2×2 orientation rotation matrices are globally parametrized by the formula

$$R(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \quad \theta \in \mathbb{R},$$

where θ is the relative orientation of \mathcal{F}_B relative to \mathcal{F}_W , measured using the right-handrule (which measures angles in the counterclockwise direction around the upward-pointing normal to the plane).

For 3×3 rotation matrices in SO(3), the skew symmetric matrix $[\boldsymbol{\theta} \times]$ has a physical interpretation as a *cross-product* matrix: $[\boldsymbol{\theta} \times] \vec{v} = \boldsymbol{\theta} \times \vec{v}$ for any vector $\vec{v} \in \mathbb{R}^3$. The direction of the vector $\boldsymbol{\theta}$ physically corresponds to the *axis of rotation*, and the norm of the vector, $||\boldsymbol{\theta}||$, corresponds to the angle of rotation³ about the axis of rotation. For SO(3), it can be shown that the matrix exponential formula reduces to *Rodriguez' Formula*:

$$R(\boldsymbol{\theta}) = I + \sin(\|\boldsymbol{\theta}\|) [\hat{\boldsymbol{\theta}} \times] + (1 - \cos(\|\boldsymbol{\theta}\|)) [\hat{\boldsymbol{\theta}} \times]^2 \quad \boldsymbol{\theta} \in \mathbb{R}^3,$$

where I is a 3 × 3 identity matrix and $[\hat{\boldsymbol{\theta}} \times]$ is the cross-product matrix of $\hat{\boldsymbol{\theta}} = \boldsymbol{\theta}/\|\boldsymbol{\theta}\|$. In Rodrigez' formula $\hat{\boldsymbol{\theta}}$ and $\|\boldsymbol{\theta}\|$ are the axis and angle of rotation of $R(\boldsymbol{\theta})$, measured according to the right-hand rule.

The parametrization of SO(2) is periodic in 2π , with each 2π interval parametrizing the entire SO(2). The parametrization of SO(3) in terms of $\boldsymbol{\theta}$ satisfies the following periodicity rule. The origin of $\boldsymbol{\theta}$ -space is mapped by $R(\boldsymbol{\theta})$ to the identity matrix I. Similarly, all concentric spheres of radius $\|\boldsymbol{\theta}\| = 2\pi, 4\pi, \ldots$ are mapped to I. Each pair of antipodal points on the sphere of radius $\|\boldsymbol{\theta}\| = \pi$ is mapped to the same matrix R, since $R(\pi \hat{\boldsymbol{\theta}}) = R(-\pi \hat{\boldsymbol{\theta}})$ for all $\hat{\boldsymbol{\theta}}$. Similarly, antipodal points on the spheres of radius $\|\boldsymbol{\theta}\| = 3\pi, 5\pi, \ldots$ are identified. Consider now a path in $\boldsymbol{\theta}$ -space from the origin to the sphere of radius π along a fixed direction $\hat{\boldsymbol{\theta}}$. This path represents a rotation of \mathcal{B} about $\hat{\boldsymbol{\theta}}$ by an angle which increases from zero to π . Moving next to the antipodal point $-\pi\hat{\boldsymbol{\theta}}$, rotation of \mathcal{B} from π to 2π continues on a path which moves along $-\hat{\boldsymbol{\theta}}$ back to the origin. Since $\hat{\boldsymbol{\theta}}$ can have any direction, the entire manifold SO(3) is parametrized by the ball with center at the origin and radius π , with antipodal points on its bounding sphere identified.

Definition 2 (Hybrid Coordinates). When \mathcal{B} is a 2D body the hybrid coordinates for its *c*-space are $q = (d, \theta) \in \mathbb{R}^2 \times \mathbb{R}$. When \mathcal{B} is a 3D body, the hybrid coordinates⁴ for its *c*-space are $q = (d, \theta) \in \mathbb{R}^3 \times \mathbb{R}^3$.

 $^{^{3}}Euler's\ Theorem$ states that every rigid body rotation corresponds is equivalent to a rotation about a fixed axis.

⁴Formally, the hybrid coordinates are $\mathbb{R}^n \times \mathfrak{se}(n)$, where $\mathfrak{se}(n)$ is the Lie algebra of SO(n). However, $\mathfrak{se}(n)$ is isomorphic to \mathbb{R}^n , and so \mathbb{R}^n is used for simplicity

Figure 2.2: (a) Hybrid coordinates $q = (d_x, d_y, \theta)$ for \mathcal{B} 's c-space. (b) A c-space trajectory representing \mathcal{B} 's physical motion.

When \mathcal{B} is a 2D body its c-space is simply \mathbb{R}^3 in hybrid coordinates, partitioned into 2π layers along the θ axis (see Figure 2.2). Each 2π layer provides a full parametrization of c-space. Hence a path q(t) can freely move between layers, or it can remain in a particular layer by wrapping through its bounding planes. When \mathcal{B} is a 3D body its c-space is simply \mathbb{R}^6 in hybrid coordinates, with the θ coordinates partitioned into a central ball and concentric shells each having a radius/thickness of π . Here, too, a path q(t) can freely move between neighboring shells, or it can remain in the inner ball by wrapping through antipodal points on its bounding sphere.

To summarize, c-space allows us to model the physical motions of \mathcal{B} as trajectories, q(t), of a point in \mathbb{R}^m , where m = 3 or 6. Before we proceed to fill this space with forbidden regions representing the stationary bodies, let us review the notion of rigid-body transformation.

The rigid-body transformation. As \mathcal{B} moves along a c-space trajectory q(t), the position of its points with respect to the world frame \mathcal{F}_W is specified as follows. Let b denote points of \mathcal{B} expressed in its body frame \mathcal{F}_B , and let x denote points expressed in \mathcal{F}_W (Figure 2.2(a)). The rigid-body transformation, denoted X(q, b), gives the world position of \mathcal{B} 's points at a configuration q,

$$x = X(q, b) \stackrel{\triangle}{=} \begin{cases} R(\theta)b + d & q = (d, \theta) \in \mathbb{R}^3, \ b \in \mathcal{B} & (\text{2D case}) \\ R(\theta)b + d & q = (d, \theta) \in \mathbb{R}^6, \ b \in \mathcal{B} & (\text{3D case}). \end{cases}$$

The notation $X_b(q)$ will specify the rigid-body transformation such that the point $b \in \mathcal{B}$ is held fixed. In this case $X_b(q)$ gives the world position of the fixed point b as a function of q. Figure 2.3: The c-obstacle induced by a stationary disc, shown for two choices of \mathcal{F}_B 's origin: (a) at the ellipse's center, and (b) at the ellipse's tip.

2.2 Configuration Space Obstacles

From the perspective of \mathcal{B} , the rigid stationary bodies $\mathcal{O}_1 \dots \mathcal{O}_k$ form obstacles which constrain its possible motions. Since it is physically impossible for two different rigid bodies to occupy the same space, the stationary bodies induce forbidden regions in \mathcal{B} 's c-space, called *c-obstacles*. Let $\mathcal{B}(q)$ denote the set of physical points occupied by \mathcal{B} when it is at a configuration q, and let \mathcal{O} be one of the stationary bodies. The *c-obstacle* induced by \mathcal{O} , denoted \mathcal{CO} , is the set of configurations q at which $\mathcal{B}(q)$ intersects \mathcal{O} ,

$$\mathcal{CO} \stackrel{\triangle}{=} \{ q \in \mathbb{R}^m : \mathcal{B}(q) \cap \mathcal{O} \neq \emptyset \} \quad \text{where } m = 3 \text{ or } 6.$$

When \mathcal{B} is an *n*-dimensional body, the c-obstacle \mathcal{CO} is an *m*-dimensional set in the ambient c-space \mathbb{R}^m , even when \mathcal{O} is a point obstacle. The boundary of \mathcal{CO} is an (m-1)-dimensional set, consisting of configurations at which \mathcal{B} touches \mathcal{O} from the outside. A curve on \mathcal{CO} 's boundary represents a motion of \mathcal{B} which maintains continuous contact with \mathcal{O} . In planar environments one can conceptually construct the boundary of \mathcal{CO} as follows. First one fixes the orientation of \mathcal{B} to a particular orientation θ . Then one moves \mathcal{B} along the perimeter of \mathcal{O} with this fixed orientation, making sure that \mathcal{B} maintains continuous contact with \mathcal{O} . The trace of \mathcal{B} 's origin during this circumnavigation forms a closed curve which is precisely the boundary of the fixed- θ slice of \mathcal{CO} . When this process is repeated for all θ , the resulting stack of loops forms the c-obstacle boundary.

Example 1. Figure 2.3(a) shows an ellipse \mathcal{B} moving in a planar environment populated by a stationary disc \mathcal{O} . The c-obstacle induced by \mathcal{O} is depicted in Figure 2.3(b) for two choices of \mathcal{F}_B 's origin, at the ellipse's center and at the tip of its major axis. While the two c-obstacles differ in their geometric shape (i.e. surface normal and curvature), they are topologically equivalent. This observation holds true under any choice of \mathcal{F}_W and \mathcal{F}_B .

The c-obstacle distance function. An analytic description of the c-obstacle can be constructed as follows. Let $dst(x, \mathcal{O})$ denote the minimal distance of a point x from a fixed set \mathcal{O} , given by $dst(x, \mathcal{O}) = \min_{y \in \mathcal{O}} \{ ||x - y|| \}$. The minimal distance between $\mathcal{B}(q)$ and \mathcal{O} , denoted d(q), is defined by

$$d(q) \stackrel{\triangle}{=} \min_{x \in \mathcal{B}(q)} \left\{ \mathsf{dst}(x, \mathcal{O}) \right\} = \min_{b \in \mathcal{B}} \left\{ \mathsf{dst}(X(q, b), \mathcal{O}) \right\},$$

where x = X(q, b) is the rigid-body transformation of the point $b \in \mathcal{B}$ when \mathcal{B} lies at configuration q. Note that d(q) is strictly positive outside \mathcal{CO} and is identically zero inside \mathcal{CO} . Hence the c-obstacle \mathcal{CO} is described by the inequality,

$$\mathcal{CO} = \{ q \in \mathbb{R}^m : d(q) \le 0 \}.$$

One can equivalently write $CO = \{q \in \mathbb{R}^m : d(q) = 0\}$, but the above formulation anticipates later chapters where c-space is used to analyze the motions of a quasi-rigid body.

A detailed discussion of the c-obstacles can be found in textbooks dedicated to robot motion planning [1, 2, 4, 5]. The following list summarizes some of their key properties ⁵.

- 1. Compactness and connectivity propagate. When \mathcal{B} is compact and path connected, any compact and path connected obstacle \mathcal{O} induces a compact and path connected c-obstacle \mathcal{CO} .
- 2. Union propagates. When an obstacle \mathcal{O} is a union of two sets, $\mathcal{O} = \mathcal{O}_1 \cup \mathcal{O}_2$, its c-obstacle is a union of the c-obstacles corresponding to the individual sets, $\mathcal{CO} = \mathcal{CO}_1 \cup \mathcal{CO}_2$.
- 3. Convexity propagates. Recall that a set $S \subseteq \mathbb{R}^n$ is *convex* if every pair of points in S can be connected by a line segment lying wholly in S. When \mathcal{O} and \mathcal{B} are convex bodies, each fixed-orientation slice of \mathcal{CO} is a convex set.
- 4. Polygonality propagates. When \mathcal{B} and \mathcal{O} are polygonal bodies, each fixed-orientation slice of \mathcal{CO} is a two-dimensional polygonal set. When \mathcal{B} and \mathcal{O} are polyhedral bodies, each fixed-orientation slice of \mathcal{CO} is a three-dimensional polyhedral set.

A popular method for computing the explicit shape of the c-obstacles for planar bodies can be summarized as follows. The method assumes that \mathcal{B} and \mathcal{O} are convex polygons. In this case each fixed- θ slice of \mathcal{CO} , denoted $\mathcal{CO}|_{\theta}$, is also a convex polygon. The vertices of $\mathcal{CO}|_{\theta}$ correspond to configurations at which a vertex of \mathcal{B} (having a fixed orientation θ) touches a vertex of \mathcal{O} , such that the bodies' interiors are disjoint. The vertices on the boundary of $\mathcal{CO}|_{\theta}$ can be computed by a simple algorithm which merges the vertices of \mathcal{B} and \mathcal{O} on a common unit circle [2, 4].

When \mathcal{B} is a smooth convex body and \mathcal{O} is a disc, one can explicitly parametrize the boundary of \mathcal{CO} as follows. First note that as \mathcal{B} traces the perimeter of \mathcal{O} with a fixed orientation, the contact point monotonically traces the entire perimeter of \mathcal{B} . Also note that having \mathcal{B} trace with a fixed orientation the perimeter of \mathcal{O} in \mathcal{F}_W is equivalent to having \mathcal{O} trace the perimeter of the stationary \mathcal{B} in \mathcal{F}_B . Based on these observations, let $\beta(s)$ for $s \in \mathbb{R}$ be a parametrization of \mathcal{B} 's perimeter in \mathcal{F}_B , such that the tangent $\beta'(s)$ is a unit vector. Let $J\beta'(s)$ be the unit outward normal to \mathcal{B} , where $J = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Let r be the radius of disc \mathcal{O} , and let x_0 be the position of its center in \mathcal{F}_W . Then during a motion of \mathcal{O} along \mathcal{B} 's perimeter, the curve traced by \mathcal{O} 's center in \mathcal{F}_B is: $\beta(s) + rJ\beta'(s)$ for $s \in \mathbb{R}$. Based on a simple calculation (see Exercise 8), the curve traced by \mathcal{B} 's origin in \mathcal{F}_W is: $d(s,\theta) = x_0 - R(\theta) (\beta(s) + rJ\beta'(s))$, where $R(\theta)$ is \mathcal{B} 's fixed orientation matrix. When θ varies freely in \mathbb{R} , the function $\varphi(s,\theta) = (d(s,\theta),\theta) : \mathbb{R}^2 \to \mathbb{R}^3$ provides a parametrization of \mathcal{CO} 's boundary in term of s and θ . The c-obstacles depicted in Figure 2.3 were generated using this technique.

Example: Obtain the c-obstacle parametrization for an ellipse obstacle, described by $(x-x_0)^T P(x-x_0) \le 1$ where P > 0. At the contact point x(s): $P(x(s)-x_0) =$

 $^{{}^{5}}$ The term "propagate in this list implies that the property in the *n*-dimensional Euclidean workspace propagates, or is conserved, under the mapping to configuration space.n

 $-\lambda R(\theta_0) J\beta'(s)$ for some $\lambda > 0$. Multiplying both sides by $P^{-1/2}$ gives: $P^{1/2}(x(s) - x_0) = -\lambda P^{-1/2} R(\theta_0) J\beta'(s)$. Taking the norm of both sides gives:

$$1 = (x(s) - x_0)^T P(x(s) - x_0) = \lambda ||P^{-1/2} R(\theta_0) J\beta'(s)|| \Rightarrow \lambda(s) = \frac{1}{||P^{-1/2} R(\theta_0) J\beta'(s)||}.$$

Substituting for $\lambda(s)$ in the contact-normals equation gives

$$P(x(s) - x_0) = -\lambda(s)R(\theta_0)J\beta'(s) \Rightarrow x(s) = x_0 - \lambda(s)P^{-1}R(\theta_0)J\beta'(s).$$

On the other hand, $x(s) = R(\theta_0)b(s) + d(s)$. Substituting for x(s) and solving for d(s) gives

$$d(s,\theta) = x(s) - R(\theta)b(s) = x_0 - \lambda(s)P^{-1}R(\theta)J\beta'(s) - R(\theta)b(s)$$

= $x_0 - R(\theta)(b(s) + \lambda(s)P^{-1}J\beta'(s)),$

where θ is now freely varying in \mathbb{R} . Note that $b(s) + \lambda(s)P^{-1}J\beta'(s)$ is the curve traced by \mathcal{O} 's center in \mathcal{F}_B (what about \mathcal{O} 's orientation?)

The c-obstacle boundary is generally a piecewise smooth surface in the 2D case. For instance, when \mathcal{B} is a convex polygon and \mathcal{O} is a disc, \mathcal{CO} 's boundary consists of two types of smooth two-dimensional "patches" meeting along one-dimensional curves. An edge-patch generated by an edge of \mathcal{B} sliding on \mathcal{O} , and a vertex-patch generated by a vertex of \mathcal{B} sliding on \mathcal{O} . The boundary of \mathcal{CO} is locally smooth at any configuration at which \mathcal{B} touches \mathcal{O} at a single point, such that the two bodies are smooth in the vicinity of the contact. In particular, the entire boundary of \mathcal{CO} is smooth when \mathcal{B} and \mathcal{O} are smooth convex bodies (see exercise). Similar observations hold for the five-dimensional boundary of \mathcal{CO} in the 3D case.

2.3 The C-Obstacles 1'st and 2'nd-Order Geometry

When \mathcal{B} is contacted by stationary finger bodies $\mathcal{O}_1, \ldots, \mathcal{O}_k$, its configuration q lies on the boundary of each c-obstacle \mathcal{CO}_i for $i = 1 \ldots k$. We shall see in Chapter 4 that the free motions of \mathcal{B} are determined in this case by the first and second-order geometry of the c-obstacle boundaries i.e., by the c-obstacles' normal and curvature. Let us now focus on a particular stationary body \mathcal{O} , and derive formulas for the normal and curvature of its c-obstacle boundary, denoted $\mathsf{bdy}(\mathcal{CO})$. We shall assume that \mathcal{B} touches \mathcal{O} at a single point, such that the two bodies have smooth boundaries in the vicinity of the contact. We first obtain a formula for the c-obstacle normal, then obtain a formula for its curvature.

2.3.1 The C-Obstacle Normal

By construction $\mathcal{CO} = \{q \in \mathbb{R}^m : d(q) \leq 0\}$. If d(q) would have been differentiable at $q \in \mathsf{bdy}(\mathcal{CO})$, its gradient $\nabla d(q)$ would be collinear with the c-obstacle outward normal at q. But d(q) is identically zero inside \mathcal{CO} and is monotonically increasing away from \mathcal{CO} , implying that it is *non-differentiable* at $q \in \mathsf{bdy}(\mathcal{CO})$ However, d(q) is Lipschitz continuous,