
Chapter 2

The Configuration Space of a Rigid
Body

The basic problem to be considered in this chapter consists of a freely moving rigid body B
surrounded by stationary rigid bodies O1 . . .Ok. The stationary bodies represent fingertips,
fixturing elements, or terrain segments supporting B against gravity. The body B represents
the object begin grasped, a workpiece, or the rigidified multi-legged vehicle. This chapter
introduces the notion of the rigid-body configuration space, or c-space, which is essential
for analyzing the mobility and stability of B with respect to its surrounding bodies. The
chapter begins with a parametrization of B’s c-space in terms of hybrid coordinates. Con-
figuration space obstacles (c-obstacles) are then introduced, and several of their properties
are described. The chapter proceeds to describe the first and second-order geometry of the
c-space obstacles, as this geometry plays a key role in subsequent chapters. Finally, the
notion of generalized forces or wrenches is introduced in the context of configuration space.
Rigid-Body

2.1 The Notion of Configuration Space

The points of the rigid body B retain their relative distance as the body moves in the environ-
ment, and B’s configuration specifies the stationary state of the object in the environment.
Equivalently, the position of each of B’s constituent points can be determined from its con-
figuration. The specification of B’s configuration requires a selection of two frames, depicted
in Figure 2.1. The first is a fixed world frame, denoted FW , which establishes a coordinate
system for the environment, or workspace, in which B moves. We assume that workspace is
modeled as an n-dimensional Euclidean space, IRn, where n=2 or 3. The second is a body

frame, denoted FB, which is rigidly attached to B. The configuration of B can be specified
by a vector d∈ IRn describing the position of FB’s origin with respect to the origin of FW ,
and an rotation matrix, R ∈ IRn×n, whose columns describe the relative orientation of the
axes of FB with respect to those of FW . The collection of n×n orientation matrices forms a
group under matrix multiplication, termed the special orthogonal group, and denoted by the
symbol SO(n).

23



24 CHAPTER 2. THE CONFIGURATION SPACE OF A RIGID BODY

W

body O1

stationary

body O
stationary

2
F
B

F
B

F

x = Rr + d

B(q)

B

space (d,R)
configuration

Figure 2.1: The physical geometry underlying the c-space representation of a 3D body B.
Think of B’s configuration as a placement of B in its workspace.

Characterization of SO(n). The special orthogonal group of n × n orientation matrices
is given by

SO(n) =
{

R ∈ IRn×n : RT R = I and det(R) = 1
}

,

where I is an n × n identity matrix.

The characterization of SO(n) provides two important insights. First, every rotation matrix
acts on vectors v ∈ IRn so as to preserve their length, since ‖Rv‖ = (vT RT RvT )1/2 = ‖v‖.
Second, SO(n) is a compact smooth manifold of dimension 1

2
n(n−1) in the space IRn×n. In

particular, SO(2) is a one-dimensional loop in the space of 2 × 2 matrices, while SO(3) is a
compact three-dimensional manifold in the space of 3 × 3 matrices.

Definition 1 (Configuration Space). The configuration space of B, denoted C, is the smooth

manifold C = IRn×SO(n), consisting of pairs (d, R) such that d ∈ IRn and R ∈ SO(n).

The dimension of C is the sum: m = n + 1

2
n(n−1) = 1

2
n(n + 1), giving m = 3 when B is a

2-dimensional (2D) body and m=6 when B is a 3-dimensional (3D) body. We now introduce
a parametrization of C in terms of hybrid coordinates [7]. This parametrization allows us to
locally represente C as a Euclidean space IRm, with some periodicity rules for the coordinates
representing the orientation matrices.

We first introduce coordinates for SO(n). The group SO(n) is an important instance of a
Lie group.1 A standard means for parametrizing Lie groups is via exponential coordinates:

R(θ) = e[θ×]

where the matrix exponential can be formally defined via the series: exp(A) = I +A+ 1
2!
A2+

· · · , and where [θ×] is a skew-symmetric matrix2.

1Lie groups are matrix groups possessing a smooth manifold structure.
2These skew-symmetric matrices form the Lie Algebra of the Lie group.



2.1. THE NOTION OF CONFIGURATION SPACE 25

while the exponential coordinates for SO(3) are a vector θ ∈ IR3 (since SO(3) is a three-
dimensional manifold). The exponential coordinates are constructed in two stages.

Exponential Coordinates for SO(n). The exponential coordinate for SO(2) is a scalar
θ (since SO(2) is a one-dimensional manifold). The skew symmetric matrix in the matrix

exponential representation of SO(2) is the 2 × 2 matrix [θ×] = θJ where J =
»

0 −1
1 0

–

.

Consequently, the 2×2 orientation rotation matrices are globally parametrized by the formula

R(θ) =

[

cos θ − sin θ
sin θ cos θ

]

θ ∈ IR,

where θ is the relative orientation of FB relative to FW , measured using the right-hand-
rule (which measures angles in the counterclockwise direction around the upward-pointing
normal to the plane).

For 3 × 3 rotation matrices in SO(3), the skew symmetric matrix [θ×] has a physical inter-
pretation as a cross-product matrix: [θ×]~v = θ × ~v for any vector ~v ∈ IR3. The direction
of the vector θ physically corresponds to the axis of rotation, and the norm of the vector,
||θ||, corresponds to the angle of rotation3 about the axis of rotation. For SO(3), it can be
shown that the matrix exponential formula reduces to Rodriguez’ Formula:

R(θ) = I + sin(‖θ‖)[θ̂×] +
(

1−cos(‖θ‖)
)

[θ̂×]2 θ ∈ IR3,

where I is a 3 × 3 identity matrix and [θ̂×] is the cross-product matrix of θ̂ = θ/‖θ‖. In
Rodrigez’ formula θ̂ and ‖θ‖ are the axis and angle of rotation of R(θ), measured according
to the right-hand rule.

The parametrization of SO(2) is periodic in 2π, with each 2π interval parametrizing the
entire SO(2). The parametrization of SO(3) in terms of θ satisfies the following periodicity
rule. The origin of θ-space is mapped by R(θ) to the identity matrix I. Similarly, all
concentric spheres of radius ‖θ‖ = 2π, 4π, . . . are mapped to I. Each pair of antipodal points
on the sphere of radius ‖θ‖ = π is mapped to the same matrix R, since R(πθ̂) = R(−πθ̂)
for all θ̂. Similarly, antipodal points on the spheres of radius ‖θ‖ = 3π, 5π, . . . are identified.
Consider now a path in θ-space from the origin to the sphere of radius π along a fixed
direction θ̂. This path represents a rotation of B about θ̂ by an angle which increases from
zero to π. Moving next to the antipodal point −πθ̂, rotation of B from π to 2π continues
on a path which moves along −θ̂ back to the origin. Since θ̂ can have any direction, the
entire manifold SO(3) is parametrized by the ball with center at the origin and radius π,
with antipodal points on its bounding sphere identified.

Definition 2 (Hybrid Coordinates). When B is a 2D body the hybrid coordinates for its

c-space are q = (d, θ)∈IR2×IR. When B is a 3D body, the hybrid coordinates4 for its c-space

are q = (d, θ) ∈ IR3 × IR3.

3Euler’s Theorem states that every rigid body rotation corresponds is equivalent to a rotation about a
fixed axis.

4Formally, the hybrid coordinates are IRn × se(n), where se(n) is the Lie algebra of SO(n). However,
se(n) is isomorphic to IRn, and so IRn is used for simplicity
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Figure 2.2: (a) Hybrid coordinates q = (dx, dy, θ) for B’s c-space. (b) A c-space trajectory
representing B’s physical motion.

When B is a 2D body its c-space is simply IR3 in hybrid coordinates, partitioned into 2π
layers along the θ axis (see Figure 2.2). Each 2π layer provides a full parametrization of
c-space. Hence a path q(t) can freely move between layers, or it can remain in a particular
layer by wrapping through its bounding planes. When B is a 3D body its c-space is simply IR6

in hybrid coordinates, with the θ coordinates partitioned into a central ball and concentric
shells each having a radius/thickness of π. Here, too, a path q(t) can freely move between
neighboring shells, or it can remain in the inner ball by wrapping through antipodal points
on its bounding sphere.

To summarize, c-space allows us to model the physical motions of B as trajectories, q(t), of
a point in IRm, where m = 3 or 6. Before we proceed to fill this space with forbidden regions
representing the stationary bodies, let us review the notion of rigid-body transformation.

The rigid-body transformation. As B moves along a c-space trajectory q(t), the position
of its points with respect to the world frame FW is specified as follows. Let b denote points of
B expressed in its body frame FB, and let x denote points expressed in FW (Figure 2.2(a)).
The rigid-body transformation, denoted X(q, b), gives the world position of B’s points at a
configuration q,

x = X(q, b)
△
=

{

R(θ)b + d q=(d, θ)∈IR3, b∈B (2D case)
R(θ)b + d q=(d, θ)∈IR6, b∈B (3D case).

The notation Xb(q) will specify the rigid-body transformation such that the point b ∈ B is
held fixed. In this case Xb(q) gives the world position of the fixed point b as a function of q.
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Figure 2.3: The c-obstacle induced by a stationary disc, shown for two choices of FB’s origin:
(a) at the ellipse’s center, and (b) at the ellipse’s tip.

2.2 Configuration Space Obstacles

From the perspective of B, the rigid stationary bodies O1 . . .Ok form obstacles which con-
strain its possible motions. Since it is physically impossible for two different rigid bodies
to occupy the same space, the stationary bodies induce forbidden regions in B’s c-space,
called c-obstacles. Let B(q) denote the set of physical points occupied by B when it is at a
configuration q, and let O be one of the stationary bodies. The c-obstacle induced by O,
denoted CO, is the set of configurations q at which B(q) intersects O,

CO △
= {q ∈ IRm : B(q) ∩O 6= ∅} where m = 3 or 6.

When B is an n-dimensional body, the c-obstacle CO is an m-dimensional set in the ambient
c-space IRm, even when O is a point obstacle. The boundary of CO is an (m−1)-dimensional
set, consisting of configurations at which B touches O from the outside. A curve on CO’s
boundary represents a motion of B which maintains continuous contact with O. In planar
environments one can conceptually construct the boundary of CO as follows. First one fixes
the orientation of B to a particular orientation θ. Then one moves B along the perimeter
of O with this fixed orientation, making sure that B maintains continuous contact with O.
The trace of B’s origin during this circumnavigation forms a closed curve which is precisely
the boundary of the fixed-θ slice of CO. When this process is repeated for all θ, the resulting
stack of loops forms the c-obstacle boundary.

Example 1. Figure 2.3(a) shows an ellipse B moving in a planar environment populated
by a stationary disc O. The c-obstacle induced by O is depicted in Figure 2.3(b) for two
choices of FB’s origin, at the ellipse’s center and at the tip of its major axis. While the
two c-obstacles differ in their geometric shape (i.e. surface normal and curvature), they are
topologically equivalent. This observation holds true under any choice of FW and FB.

The c-obstacle distance function. An analytic description of the c-obstacle can be
constructed as follows. Let dst(x,O) denote the minimal distance of a point x from a fixed
set O, given by dst(x,O) = miny∈O{‖x − y‖}. The minimal distance between B(q) and O,

denoted d(q), is defined by

d(q)
△
= min

x∈B(q)

{dst(x,O)} = min
b∈B

{

dst
(

X(q, b),O
)}

,

where x = X(q, b) is the rigid-body transformation of the point b ∈ B when B lies at
configuration q. Note that d(q) is strictly positive outside CO and is identically zero inside
CO. Hence the c-obstacle CO is described by the inequality,

CO = {q ∈ IRm : d(q) ≤ 0}.

One can equivalently write CO = {q ∈ IRm : d(q) = 0}, but the above formulation anticipates
later chapters where c-space is used to analyze the motions of a quasi-rigid body.



28 CHAPTER 2. THE CONFIGURATION SPACE OF A RIGID BODY

A detailed discussion of the c-obstacles can be found in textbooks dedicated to robot motion
planning [1, 2, 4, 5]. The following list summarizes some of their key properties 5.

1. Compactness and connectivity propagate. When B is compact and path con-
nected, any compact and path connected obstacle O induces a compact and path
connected c-obstacle CO.

2. Union propagates. When an obstacle O is a union of two sets, O = O1 ∪ O2, its
c-obstacle is a union of the c-obstacles corresponding to the individual sets, CO =
CO1 ∪ CO2.

3. Convexity propagates. Recall that a set S ⊆ IRn is convex if every pair of points in
S can be connected by a line segment lying wholly in S. When O and B are convex
bodies, each fixed-orientation slice of CO is a convex set.

4. Polygonality propagates. When B and O are polygonal bodies, each fixed-orientation
slice of CO is a two-dimensional polygonal set. When B and O are polyhedral bodies,
each fixed-orientation slice of CO is a three-dimensional polyhedral set.

A popular method for computing the explicit shape of the c-obstacles for planar bodies can
be summarized as follows. The method assumes that B and O are convex polygons. In this
case each fixed-θ slice of CO, denoted CO|θ, is also a convex polygon. The vertices of CO|θ
correspond to configurations at which a vertex of B (having a fixed orientation θ) touches
a vertex of O, such that the bodies’ interiors are disjoint. The vertices on the boundary of
CO|θ can be computed by a simple algorithm which merges the vertices of B and O on a
common unit circle [2, 4].

When B is a smooth convex body and O is a disc, one can explicitly parametrize the boundary
of CO as follows. First note that as B traces the perimeter of O with a fixed orientation,
the contact point monotonically traces the entire perimeter of B. Also note that having B
trace with a fixed orientation the perimeter of O in FW is equivalent to having O trace
the perimeter of the stationary B in FB. Based on these observations, let β(s) for s ∈ IR
be a parametrization of B’s perimeter in FB, such that the tangent β′(s) is a unit vector.

Let Jβ ′(s) be the unit outward normal to B, where J =
»

0 −1
1 0

–

. Let r be the radius

of disc O, and let x0 be the position of its center in FW . Then during a motion of O
along B’s perimeter, the curve traced by O’s center in FB is: β(s) + rJβ′(s) for s ∈ IR.
Based on a simple calculation (see Exercise 8), the curve traced by B’s origin in FW is:
d(s, θ) = x0 − R(θ)

(

β(s) + rJβ′(s)
)

, where R(θ) is B’s fixed orientation matrix. When θ
varies freely in IR, the function ϕ(s, θ)=

(

d(s, θ), θ
)

: IR2 → IR3 provides a parametrization
of CO’s boundary in term of s and θ. The c-obstacles depicted in Figure 2.3 were generated
using this technique.

Example: Obtain the c-obstacle parametrization for an ellipse obstacle, described

by (x−x0)
T P (x−x0) ≤ 1 where P > 0. At the contact point x(s): P (x(s)−x0) =

5The term “propagate in this list implies that the property in the n-dimensional Euclidean workspace
propagates, or is conserved, under the mapping to configuration space.n
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−λR(θ0)Jβ ′(s) for some λ > 0. Multiplying both sides by P−1/2 gives: P 1/2(x(s)−
x0) = −λP−1/2R(θ0)Jβ ′(s). Taking the norm of both sides gives:

1 = (x(s) − x0)
T P (x(s) − x0) = λ‖P−1/2R(θ0)Jβ ′(s)‖ ⇒ λ(s) =

1

‖P−1/2R(θ0)Jβ ′(s)‖ .

Substituting for λ(s) in the contact-normals equation gives

P (x(s) − x0) = −λ(s)R(θ0)Jβ′(s) ⇒ x(s) = x0 − λ(s)P−1R(θ0)Jβ′(s).

On the other hand, x(s) = R(θ0)b(s)+d(s). Substituting for x(s) and solving for

d(s) gives

d(s, θ) = x(s) − R(θ)b(s) = x0 − λ(s)P−1R(θ)Jβ ′(s) − R(θ)b(s)
= x0 − R(θ) (b(s) + λ(s)P−1Jβ ′(s)) ,

where θ is now freely varying in IR. Note that b(s)+λ(s)P−1Jβ′(s) is the curve

traced by O’s center in FB (what about O’s orientation?)

The c-obstacle boundary is generally a piecewise smooth surface in the 2D case. For instance,
when B is a convex polygon and O is a disc, CO’s boundary consists of two types of smooth
two-dimensional “patches” meeting along one-dimensional curves. An edge-patch generated
by an edge of B sliding on O, and a vertex-patch generated by a vertex of B sliding on O.
The boundary of CO is locally smooth at any configuration at which B touches O at a single
point, such that the two bodies are smooth in the vicinity of the contact. In particular, the
entire boundary of CO is smooth when B and O are smooth convex bodies (see exercise).
Similar observations hold for the five-dimensional boundary of CO in the 3D case.

2.3 The C-Obstacles 1’st and 2’nd-Order Geometry

When B is contacted by stationary finger bodies O1, . . . ,Ok, its configuration q lies on the
boundary of each c-obstacle COi for i = 1 . . . k. We shall see in Chapter 4 that the free
motions of B are determined in this case by the first and second-order geometry of the c-
obstacle boundaries i.e., by the c-obstacles’ normal and curvature. Let us now focus on a
particular stationary body O, and derive formulas for the normal and curvature of its c-
obstacle boundary, denoted bdy(CO). We shall assume that B touches O at a single point,
such that the two bodies have smooth boundaries in the vicinity of the contact. We first
obtain a formula for the c-obstacle normal, then obtain a formula for its curvature.

2.3.1 The C-Obstacle Normal

By construction CO = {q ∈ IRm : d(q) ≤ 0}. If d(q) would have been differentiable at
q ∈ bdy(CO), its gradient ∇d(q) would be collinear with the c-obstacle outward normal
at q. But d(q) is identically zero inside CO and is monotonically increasing away from CO,
implying that it is non-differentiable at q ∈ bdy(CO) However, d(q) is Lipschitz continuous,


