


Chapter 3

Configuration Space Tangent and

Cotangent Vectors

The rigid-body configuration space provides a geometric framework for describing the con-
straints imposed on the object’s motions by the grasping fingers. An important component
of this framework is the representation of the object’s velocities as c-space tangent vectors,
and the representation of the finger forces as c-space cotangent vectors. This chapter con-
sists of three parts. Section 3.1 describes the relation of the c-space tangent vectors to the
rigid-body linear and angular velocities. Based on the virtual work principle, Section 3.2
describes how the rigid body forces are represented as c-space cotangent vectors. Section 3.3
introduces the line geometry of the rigid-body tangent and cotangent vectors. Using this
theory, we obtain a graphical depiction of the c-obstacle tangent space, a representation
which will prove useful in subsequent chapters.

3.1 C-Space Tangent Vectors

Let a rigid body B move along a c-space trajectory q(t). The tangent vector q̇(t) = d
dt

q(t)
represents an instantaneous motion of B in the physical environment. The geometric in-
terpretation of q̇(t) is straightforward in the 2D case. In this case q̇(t) = (ḋ(t), θ̇(t)) is
simply B’s linear and rotational velocity with respect to the world frame FW . In the 3D
case q̇(t) = (ḋ(t), θ̇(t)). However, in this case only ḋ(t) retains the interpretation of being
B’s linear velocity with respect to FW . In order to assign an intuitive meaning to θ̇(t), we
describe under what condition it can be interpreted as B’s angular velocity vector.

Let us first summarize the notion of rigid-body angular velocity vector. Let R(t) be a curve
in SO(3) such that R(0) = R0. The tangent to R(t) at R0 is given by Ṙ = d

dt

∣

∣

t=0
R(t).

Since the matrices of SO(3) satisfy the identity R(t)RT (t)=I, the derivative Ṙ satisfies the
identity ṘRT

0 + R0Ṙ
T = 0, implying that ṘRT

0 is a skew-symmetric matrix. The angular

velocity vector, denoted ω, parametrizes the skew-symmetric matrices ṘRT
0 as cross-product

matrices, ṘRT
0 = [ω×] for ω ∈ IR3. Based on this definition, the derivative of R(t) at R0 is

given by
d

dt

∣

∣

∣

∣

t=0

R(t) = [ω×]R0 ω ∈ IR3. (3.1)
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The angular velocity vector provides an interpretation of Ṙ as an instantaneous rotation of
B about an axis collinear with ω passing through B’s origin, with ‖ω‖ being B’s rotational
velocity about this axis.

In order to interpret θ̇ as an angular velocity vector, we shall assume that B has a dis-
tinguished configuration, denoted (d0, R0), which will later be its nominal equilibrium con-
figuration. The orientation matrices SO(3) are parametrized by exponential coordinates
centered at R0,

R(θ) = exp
(

[θ×]
)

R0 θ ∈ IR3.

The c-space coordinates are still (d, θ)∈IR3×IR3, but now B’s orientation R0 is parametrized
by θ =~0. The following lemma asserts that the tangent vectors θ̇ at θ = ~0 are B’s angular
velocity vectors at the orientation R0.

Lemma 3.1.1. Let SO(3) be parametrized by R(θ) = exp([θ×])R0 for θ∈ IR3. Let θ(t) be

a curve in θ-space such that θ(0) = ~0 and d
dt

∣

∣

t=0
θ(t) = θ̇. Then

d

dt

∣

∣

∣

∣

t=0

R(θ(t)) = [θ̇×]R0 = [ω×]R0,

where ω is B’s angular velocity vector at R0.

Proof: Using the expansion exp([θ×])=
(

I + [θ×] + 1
2
[θ×]2 + · · ·

)

, the derivative of R(θ)

is: d
dt

∣

∣

t=0
R(θ(t))=

(

[θ̇×] + 1
2

(

[θ̇×][θ×]+[θ×][θ̇×]
)

+ · · ·
)

R0 =[θ̇×]R0, where we substituted

θ(0) = ~0. Observing that θ̇ plays the role of ω in (3.1), we conclude that θ̇ = ω. �

Remark: The lemma implies that the collection of skew-symmetric matrices [ω×] for ω∈IR3

spans the tangent space to SO(3) at R0. Since SO(3) is a three-dimensional manifold,
the skew-symmetric matrices form a three-dimensional vector space with respect to matrix
addition and scalar multiplication. The skew-symmetric matrices also possess a Lie algebra

structure which has been used in the kinematic modeling of serial chains [2, 4].

We shall denote the tangent vectors at the configuration q0 as pairs q̇ =(v, ω), where v = ḋ
and ω= θ̇ are B’s linear and angular velocity vectors at q0. For the sake of uniformity, let us
also parametrize the orientation matrices SO(2) by exponential coordinates centered at R0,

R(θ) = exp(θJ)R0 θ ∈ IR, J =
»

0 −1
1 0

–

.

The c-space coordinates in the 2D case are (d, θ)∈IR2×IR, with the scalar θ=0 parametrizing
the orientation R0. The rotational velocity θ̇ at θ =0 is the angular velocity of B about an
axis perpendicular to the planar environment. We denote this angular velocity by the same
symbol ω, where the distinction between ω∈IR (2D case) and ω∈IR3 (3D case) will be clear
from the context. The derivative of R(θ) at θ=0 satisfies a formula analogous to (3.1),

d

dt

∣

∣

∣

∣

t=0

R(θ(t)) = ωJR0 ω ∈ IR, J =
»

0 −1
1 0

–

. (3.2)

Note that JR0 = R0J in the above formula, since the matrices of SO(2) commute and R0

and J both belong to SO(2).



Tangent space notation. Let q0 ∈ IRm correspond to the nominal configuration (d0, R0),
where m=3 or 6. The tangent space to IRm at q0, denoted Tq0

IRm, is the linear m-dimensional
space spanned by all tangent vectors q̇ based at q0. Recall now that S denotes the boundary
of the c-obstacle CO, and that Tq0

S denotes the tangent space to S at q0 ∈ S. The latter
tangent space is an (m−1)-dimensional subspace of all vectors q̇ ∈ Tq0

IRm tangent to S
at q0. It consists of those instantaneous motions of B along which the contact point moves
tangentially with respect to the stationary body O (see exercise). In the 2D case Tq0

S is
simply a plane tangent to CO’s boundary at q0. In the 3D case it is a five-dimensional linear
space tangent to CO’s boundary at q0. The tangent space Tq0

S is depicted in the third part
of this chapter using line geometry.

Exercise: The tangent space to CO’s boundary at q0 is given by Tq0
S = {q̇ ∈ Tq0

IRm :
η(q0) · q̇ = 0}, where η(q0) is the c-obstacle normal at q0. Verify that q̇ ∈ Tq0

S is the
collection of instantaneous motions along which B’s contact point moves tangentially with
respect to the stationary body O.

Solution: Since η(q0) = DXb(q0)
T n(x) and ẋ = DXb(q0)q̇ by the chain rule, Tq0

S = {q̇ :
η(q0) · q̇ = n(x) · ẋ = 0}.

Example: Recall the parametrization ϕ(s, θ) of CO’s boundary associated with an ellipse B
and a stationary disc O. We have already verified as an exercise that the tangent vectors
∂
∂s

ϕ(s, θ) and ∂

∂θ
ϕ(s, θ) are linearly independent and therefore span the tangent plane TqS

where q = ϕ(s, θ). The two tangent vectors are given by

∂

∂s
ϕ(s, θ) =

(

−R(θ)β ′(s)
0

)

and
∂

∂θ
ϕ(s, θ) =

(

−JR(θ)
(

β(s) + rJβ′(s)
)

1

)

,

where we omitted a scalar factor preceding ∂
∂s

ϕ(s, θ). In these expressions r is the radius of
O, β(s) is the contact point expressed in FB, and β′(s) is the unit tangent to B’s boundary.
Retaining ∂

∂s
ϕ(s, θ) and taking the sum r ∂

∂s
ϕ(s, θ) + ∂

∂θ
ϕ(s, θ) gives the basis vectors,

q̇1 =

(

−Jn(x)
0

)

and q̇2 =

(

−JR(θ)b
1

)

,

where we substituted b=β(s) and n(x) = −R(θ)Jβ′(s). (In the latter expression Jβ ′(s) is the
outward unit normal to B expressed in FB, so that the inward unit normal to B expressed in
FW is n(x) = −R(θ)Jβ′(s).) The tangent vector q̇1 represents an instantaneous translation
of B such that ẋ is tangent to O at x. Since DXb(q) = [I JRb], the tangent vector q̇2 satisfies
ẋ = DXb(q)q̇2 = [I JRb]q̇2 = 0, implying that q̇2 represents an instantaneous rolling of B on
O.

Make a c-obstacle figure with tangent planes showing the above basis

vectors.
ToDo

We conclude this section with a derivation of the Jacobian of the rigid-body transformation
at the configuration q0. This Jacobian already appeared in the c-obstacle normal formula
without a formal derivation, and it plays an important role in the subsequent representation
of forces as cotangent vectors.



Lemma 3.1.2. Let x=Xb(q) be the rigid-body transformation such that b is held fixed on B,

and let q0 be the nominal configuration described above. In the 2D case, the Jacobian of

Xb(q) is the 2 × 3 matrix

DXb(q) = [I JRb],

where I is a 2 × 2 identity matrix, J =
»

0 −1
1 0

–

, and R is B’s orientation matrix.

In the 3D case, the Jacobian of Xb(q) at q=q0 is the 3 × 6 matrix

DXb(q0) = [I −[R0b×]],

where I is a 3 × 3 identity matrix and R0 is B’s orientation matrix at q0.

Proof: Let q(t) be a c-space curve such that q(0)=q and q̇(0)= q̇ = (v, ω). The Jacobian
of Xb(q) satisfies the chain rule: d

dt

∣

∣

t=0
Xb(q(t)) = DXb(q)q̇. In the 2D case Xb(q(t)) =

R(θ(t))b + d(t). Using (3.2), d
dt

∣

∣

t=0
Xb(q(t)) = Ṙb + ḋ = ωJRb + v = [I JRb]

(

v

ω

)

, implying

that DXb(q) = [I JRb]. In the 3D case, Xb(q(t)) = R(θ(t))b + d(t) such that q(0) = q0.

Using (3.1), d
dt

∣

∣

t=0
Xb(q(t)) = Ṙb + ḋ = [ω×]R0b + v = −[R0b×]ω + v = [I −[R0b×]]

(

v
ω

)

,

implying that DXb(q0) = [I −[R0b×]]. �

3.2 C-Space Cotangent Vectors

The c-space cotangent vectors represent the action of physical forces on B, based on the
following principle. Let a force f act on B at a fixed point b, such that x = Xb(q) is the
world position of the force action point. In our setting f can be a contact force generated
by a stationary body O, or it can be a gravitational force acting at B’s center of mass. As B
moves along a c-space trajectory q(t), the point x moves along a trajectory x(t) = Xb(q(t)).
Now let us think of x as a point mass attached to B. The instantaneous work done by f on
the point mass x (i.e. the change in the point-mass kinetic energy measured in Joules per
seconds) is given by the inner product f · ẋ(t). Since the point masss is rigidly attached to
B, the force f must induce an identical change in B’s kinetic energy. This physical fact is
the basis for the representation of forces as c-space covectors.

Let us first summarize the notion of a covector in IRm. The cotangent space of IRm at q0,
denoted T ∗

q0
IRm, consists of all real-valued functions h : Tq0

IRm → IR that act linearly on
the tangent vectors q̇ ∈ Tq0

IRm. The elements of T ∗

q0
IRm are cotangent vectors. A cotangent

vector can be represented by a fixed tangent vector acting on the tangent vectors q̇ ∈ Tq0
IRm

as follows. Let e1 . . . em be the standard basis for Tq0
IRm, induced from the standard basis

for the ambient space IRm. The components of h with respect to this basis are the scalars
h(e1) . . . h(em). Now let u1 . . . um be the components of q̇ with respect to the same basis, so
that q̇ =

∑m

i=1 uiei. By the linearity of h,

h(q̇) =
m

∑

i=1

uih(ei) =
(

h(e1) . . . h(em)
)

·
(

u1 . . . um

)

=
(

h(e1) . . . h(em)
)







u1
...

um






q̇ ∈ Tq0

IRm,



where ’·’ denotes the Euclidean inner product in Tq0
IRm. The action of h on q̇ is thus

represented by the inner product of the fixed row vector (h(e1) . . . h(em)) with column vectors
(u1 . . . um). In the following discussion we shall treat cotangent vectors as fixed tangent
vectors appearing on the left side of the Euclidean inner product.

The virtual work principle. Let B move along a c-space trajectory q(t) such that q(0) = q0

and q̇ = q̇(0). Let a force f act on B at a point x=Xb(q(t)) during this motion. The covector
representing the action of f at q=q0 will be denoted w. The formula for w is based on the
following virtual work principle. For all instantaneous motions q̇ ∈ Tq0

IRm, the work done

by w on B along q̇ must be equal to the work done by f on the point mass x along ẋ. The
work done by f on x is the inner product f · ẋ, while the work done by w on B is the inner
product w · q̇, where w is yet unknown. Since ẋ = DXb(q0)q̇ by the chain rule, the virtual
work principle gives the relation

w · q̇ = f · DXb(q0)q̇ = fT (x)DXb(q0)q̇ for all q̇ ∈ Tq0
IRm.

Adopting the convention that w is written as a column vector, the linear function corre-
sponding to w satisfies the formula

w = DXT
b (q0)f where f acts at x = Xb(q0).

Exercise: Let a force f act on B at a point x. Interpret f as a covector acting on the
velocities ẋ of a point mass at x. Interpret the wrench formula as a transformation from
T ∗

x IRn to T ∗

q0
IRm.

A concrete formula for w is obtained by substituting for DXb(q0) according to Lemma 3.1.2.

Lemma 3.2.1. Let a force f act on B at the point x = Xb(q0), where q0 is B’s nominal

configuration. The wrench generated on B by f is given by

w =

(

f
τ

)

=















(

f
f ·JR0b

)

2D case

(

f
R0b ×f

)

3D case,

where R0 is B’s orientation at q0, and J =
»

0 −1
1 0

–

in the 2D case.

The resulting covector w, called a wrench, consists of a force f and a torque τ . Note that
the torque is denoted by the same symbol in the 2D and 3D cases. In the 2D case τ is a
scalar acting about an axis perpendicular to the planar environment. In the 3D case τ is a
vector in IR3 satisfying the classical formula τ = p × f , where p = R0b is the vector from
B’s origin to the force’s action point, expressed in FW . The distinction between τ ∈ IR (2D
case) and τ ∈ IR3 (3D case) will be clear from the context.

Joel, can you insert a short sentence after the term wrench, alluding to

the source of this term? I inserted a pointer to B. Roth paper at the

end of this chapter. Perhaps ’wrenches act on screws?"

ToDo



Example: Let B move while maintaining contact with a stationary body O, and let q0

be any configuration of B along this motion. In the case of a frictionless contact the force
acting on B is collinear with B’s inward unit normal at x, f = ‖f‖n(x). Since B maintains
continuous contact with O, the contact point velocity is tangent to O at x, implying that
f · ẋ = ‖f‖(n(x) · ẋ) = 0 during this motion. It follows from the virtual work principle that
w · q̇ = 0. Since this argument holds for all q̇ ∈ Tq0

S, the wrench w = ‖f‖DXb(q0)
T n(x),

seen as a fixed tangent vector at q0, is orthogonal to the tangent space Tq0
S. Indeed, the

c-obstacle normal formula, which was derived based on purely geometric considerations, is
given by η(q0) = DXb(q0)

T n(x).

As we shall see in the next chapter, the rigid-body contact models assume that two bodies
touch at a single isolated point. However, in certain applications two rigid bodies are pur-
posely designed to make contact along several points and even a continuum of points. The
net wrench acting on B in such cases is the sum (integral in the case of a continuum) of the
wrenches generated by the individual contacts. As a concrete example, consider the wrench
generated by a drill acting on a workpiece B. To a rough approximation, the drill applies a
normal penetrating force along its axis, together with a matched pair of tangential forces at
its two tips, called flutes. The tangential forces generate a net torque about the drill’s axis
as follows. Let b be the position of the drill’s center, and let b±r be the position of the drill’s
flutes in B’s frame (i = 1, 2). The net wrench generated by tangential forces ±f acting on

B at the drill’s flutes is given by w =
„

−f

R0(b−r) × (−f)

«

+
„

f

R0(b+r) × (f)

«

=
„

~0
2R0r × f

«

, which

is a pure torque about the drill’s axis.

Exercise—frame invariance of wrench formula. Let (FW ,FB) and (F̄W , F̄B) be two
choices of world and body frames. Let q ∈ IRm and q̄ ∈ ĪR̄

m
be the c-space coordinates

associated with the two choices of frames, such that q0 and q̄0 are B’s nominal configuration
in the two c-space parametrizations. The wrench formula is w = DXb(q0)

T f and w̄ =
DX b̄(q̄0)

T f̄ with respect to the two choices of frames, where (x, f) and (x̄, f̄) are the action
point and force in FW and F̄W . Verify that the wrench formula is independent on the choice
of world and body frames.

Solution: Since w · q̇ = fT DXb(q0)q̇ = f · ẋ and w̄ · ˙̄q = f̄T DX b̄(q̄0) ˙̄q = f̄ · ˙̄x, the wrench
formula is frame invariant if f · ẋ = f̄ · ˙̄x. Let FW and F̄W be related by a fixed translation
and rotation (dW , RW ), so that points in the two frames are related by the transformation
x = RW x̄ + dW . The Jacobian of this transformation is the constant matrix RW , and by the
chain rule ẋ = RW ˙̄x. Similarly, f and f̄ are related by the transformation f = RW f̄ . Thus
f · ẋ = f̄T RT

W RW ˙̄x = f̄ · ˙̄x, implying that the wrench formula is independent on the choice
of frames.

Coordinate transformation of tangent and cotangent vectors. Let q ∈ IRm and
q̄ ∈ ĪR̄

m
be two c-space parametrizations associated with two choices of world and body

frames, such that q0 and q̄0 are B’s nominal configuration in the two parametrizations. It
can be verified that q and q̄ are related by a coordinate transformation (a diffeomorphism) q =
F (q̄), such that q0 = F (q̄0). Since the c-space trajectories are related by the transformation
q(t) = F (q̄(t)), it follows from the chain rule that q̇(t) = F ( ˙̄q(t)). The Jacobian DF (q̄0) thus



maps tangent vectors in Tq̄
0

ĪR̄
m

to tangent vectors in Tq0
IRm,

q̇ = DF (q̄0) ˙̄q q̇ ∈ Tq0
IRm, ˙̄q ∈ Tq̄

0

ĪR̄
m
.

Now let w be a covector acting on the tangent space Tq0
IRm. Using the tangent vector

transformation rule, w · q̇ = w
T
(

DF (q̄0) ˙̄q
)

=
(

w
T DF (q̄0)

)

˙̄q, where q̇ ∈ Tq0
IRm and ˙̄q ∈

Tq̄
0

ĪR
m

. It follows that the covector w̄
T =w

T DF (q̄0) ∈ T ∗

q̄
0

ĪR
m

corresponds to the covector

w ∈ T ∗

q0
IRm. Writing w and w̄ as column vectors, the covector transformation rule is

given by

w̄ = DF T (q̄0)w w ∈ T ∗

q0
IRm, w̄ ∈ T ∗

q̄
0

ĪR
m
.

Note that DF (q̄0) maps tangent vectors “forward” from Tq̄
0

ĪR
m

to Tq0
IRm, while DF T (q̄0)

maps cotangent vectors “backward” from T ∗

q0
IRm to T ∗

q̄
0

ĪR
m
.

Exercise: Let q ∈ IRm and q̄ ∈ ĪR̄
m

be two c-space parametrizations associated with two
choices of world and body frames, related by fixed rigid-body transformations (dw, Rw) and
(dB, RB). Derive the coordinate transformation q = F (q̄) between the two parametrizations.

Exercise: Verify that w̄ represents the same linear function as w.

Solution: Based on the tangent and cotangent vector transformation rules, Let q̇ = DF (q̄0) ˙̄q
and w̄ = DF T (q̄0)w. Hence w · q̇ = w

T
(

DF (q̄0) ˙̄q
)

=
(

w
T DF (q̄0)

)

˙̄q = w̄ · ˙̄q.

3.3 Line Geometry of Tangent and Cotangent Vectors

Line geometry provides an intuitive means for depicting the c-space tangent and cotangent
vectors as directed lines in physical space. This section describes three useful facts concerning
the line geometry of the c-space tangent and cotangent vectors. First, every tangent vector
q̇=(v, ω) can be represented as an instantaneous screw motion about a spatial axis. Second,
every wrench w = (f, τ) can be represented by a screw-like application of force and torque
about a spatial axis. Third, the inner product w · q̇ can be expressed as a geometric relation
between the directed lines representing w and q̇. This relation will allow us to graphically
depict the c-obstacle tangent space. The tools developed here will also serve in subsequent
chapters to depict equilibrium grasps and postures.

The set of directed spatial lines is parametrized by the following Plücker coordinates.

Definition 1. The Plücker coordinates of the directed spatial lines are vectors l = (l̂, p×
l̂)∈IR6, where p is any point on the line and l̂ is the unit direction of the line.

We will use the symbol l both for the physical line and for the vector representing the
line in Plücker coordinates. Note that any point on l can serve as a reference point, since
(p + sl̂) × l̂ = p × l̂ for s ∈ IR. As verified in exercise 3.x, the Plücker coordinates of all
spatial lines span a smooth four-dimensional manifold in IR6. This means that the spatial
lines depends on four parameters—the line direction, l̂, and the line base point, p, specified
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Figure 3.1: (a) The parameters specifying the relative position and orientation of l1 and l2.
(b) The correspondence between the embedded planar lines l1 and l2 and the planes P1 and
P2.

within a plane orthogonal to l̂.1 An important relation between spatial lines is the reciprocal
product of their Plücker coordinates.

Definition 2. The reciprocal product of two spatial lines, l1 = (l̂1, p1 × l̂1) and l2 =
(l̂2, p2 × l̂2), is the “swaped” inner product,

(l̂1, p1 × l̂1) · (p2 × l̂2, l̂2) = (l̂1, p1 × l̂1)

[

O I
I O

](

l̂2
p2 × l̂2

)

,

where O is a 3 × 3 zero matrix and I is a 3 × 3 identity matrix.

The reciprocal product of l1 and l2 is determined by the relative position and orientation
of the two lines. Let d ≥ 0 be the minimal distance between l1 and l2, and let 0 ≤ α ≤ π
be the angle between l1 and l2, measured about the lines’ common normal as depicted in
Figure 3.1(a). A geometric formula for the reciprocal product is specified in the following
proposition.

Proposition 3.3.1. The reciprocal product of two spatial lines l1 and l2 satisfies the formula

(l̂1, p1 × l̂1)

[

O I
I O

] (

l̂2
p2 × l̂2

)

= −s·d sinα, (3.3)

where d and α are the minimal distance and angle between the two lines, and s=±1 according

to the sign of the expression (p2−p1) · (l̂1 × l̂2).

When the reciprocal product of two spatial lines happens to be zero, the two lines must
intersect at a common point. This key property is summarized in the following corollary.

1The four-dimensional manifold is topologically equivalent to the tangent bundle of the unit sphere, TS2.

Every point l̂ ∈ S2 specifies a particular direction, and the sphere’s tangent plane at l̂ specifies the base

points, p, of all spatial lines having this direction.



Corollary 3.3.2. The reciprocal product of two spatial lines is zero iff the two lines intersect

in IR3, with the understanding that parallel lines intersect “at infinity.”

Proof: The reciprocal product vanishes when d sinα = 0. When d=0, l1 and l2 intersect
at a common point in IR3. When sin α =0, l1 and l2 are parallel and therefore intersect at
infinity. �

The geometric intuition behind the reciprocal product is as follows. The spatial lines can
be embedded in the χ4 =1 hyperplane of IR4, where (χ1, . . . , χ4) are the coordinates of IR4.
Every embedded line l determines a unique two-dimensional plane passing through the origin
of IR4. (An analogous situation arises when the planar lines are embedded in the χ3 = 1
plane of IR3; in this case every embedded line determines a plane passing through the origin
of IR3, as shown in Figure 3.1(b).) Now let l1 =(l̂1, p1× l̂1) and l2 =(l̂2, p2× l̂2) be two spatial
lines, and let P1 and P2 be the planes associated with the embedded lines in IR4. The two
lines intersect at a common point in IR3 iff P1 and P2 intersect along a line passing through
the origin of IR4. The planes P1 and P2 intersect along a line in IR4 iff their basis vectors
are linearly dependent. Each embedded line li passes through the point (pi, 1) ∈ IR4 along
the direction (l̂i, 0) ∈ IR4. Hence the pair {(pi, 1), (l̂i, 0)} forms a basis for P i (i = 1, 2).

The linear dependence of P1 and P2 is thus equivalent to the condition det
[

p1 l̂1 p2 l̂2
1 0 1 0

]

,

which is precisely the reciprocal product of l1 and l2.

Our next step is to represent the c-space tangent vectors, q̇ = (v, ω), as instantaneous screw-
like motions about a spatial axis, called instantaneous twists. The following statement is the
classical Chasles’ Theorem.

Theorem 1 (Instantaneous Twist). Every tangent vectors q̇ =(v, ω) ∈ Tq0
IRm can be writ-

ten as
(

v
ω

)

=

(

p × ω
ω

)

+

(

zω
~0

)

= ‖ω‖

(

p × ω̂
ω̂

)

+

(

zω
~0

)

, (3.4)

where p=ω × v/‖ω‖2
and zv · ω/‖ω‖2

. Every tangent vector thus corresponds to an instan-

taneous rotation of B about the line l=(ω̂, p × ω̂) coupled with an instantaneous translation

of B along this line, where ω̂ = ω/‖ω‖.

Proof: The linear velocity v can be expressed as the sum: v = (v ·ω̂)ω̂+(I−ω̂ω̂T )v. Using
the identity [ω̂×]2 = ω̂ω̂T −I, v = (v · ω̂)ω̂ − [ω̂×]2v = (v · ω̂)ω̂ − ω̂ × (ω̂ × v). Substituting
z = (v · ω̂)/‖ω‖ = (v · ω)/‖ω‖2 and p = (ω̂ × v)/‖ω‖ = (ω × v)/‖ω‖2 gives the result. �

Note that the Plücker coordinates of the line representing the instantaneous rotation axis,
l = (ω̂, p× ω̂), are swapped in (3.4). The parameter z is called the pitch of the instantaneous
twist. It specifies the amount of translation per unit rotation along the twist axis l. In
particular, z=0 corresponds to pure instantaneous rotation about l, while z=∞ corresponds
to pure instantaneous translation along l.

The wrenches acting on B can be analogously represented as a screw-like application of force
and torque. The following statement is the classical Poinsot’s theorem.



Theorem 2 (Wrench Screw). Any cotangent vector w=(f, τ) ∈ T ∗

q0
IRm can be written as

(

f
τ

)

=

(

f
p × f

)

+

(

~0
zf

)

= ‖f‖

(

f̂

p × f̂

)

+

(

~0
zf

)

, (3.5)

where p = τ × f/‖f‖2
and z = f · τ/‖f‖2

. Every wrench w thus applies a force along the

line l = (f̂ , p × f̂) together with a torque about this line, where f̂ = f/‖f‖.

Proof: The proof is similar to the proof of Chasles’ Theorem. The force f can be
expressed as the sum: f = (f · τ̂)τ̂ + (I − τ̂ τ̂T )f . Using the identity [τ̂×]2 = τ̂ τ̂T − I,
f = (f · τ̂ )τ̂ − [τ̂×]2f = (f · τ̂)τ̂ − τ̂ × (τ̂ × f). Substituting z = (f · τ̂ )/‖τ‖ = (f · τ)/‖τ‖2

and p = (τ̂ × f)/‖τ‖ = (τ × f)/‖τ‖2 gives the result. �

The pitch parameter, z, specifies the amount of torque applied by the wrench about l per
unit force applied along this line. In particular, a zero-pitch wrench screw corresponds to a
wrench generated by a pure force f acting along l (see exercise).

The following lemma specifies a formula for the inner product w · q̇ as a geometric relation
between the screw lines representing the wrench w and the tangent vector q̇.

Lemma 3.3.3 (Geometric Formula for w · q̇). Let the wrench w = (f, τ) ∈ T ∗

q0
IRm have a

screw axis l1 and pitch z1. Let the tangent vector q̇ = (v, ω) ∈ Tq0
IRm have a screw axis l2

and pitch z2. The inner product w · q̇ satisfies the geometric formula

w · q̇ = ‖f‖‖ω‖
(

−s · d sin α + (z1 + z2) cos α
)

,

where d and is the minimum distance between l1 and l2, α is the angle between l1 and l2,
and s = ±1 as specified above.

Proof: Substituting w = (f, p1 × f)+(~0, z1f) and q̇ = (p2 × ω, ω)+(z2ω,~0) in w · q̇ gives

w · q̇ = (f, p1 × f)

(

p2 × ω
ω

)

+ (f, p1 × f)

(

z2ω
~0

)

+ (~0, z1f)

(

p2 × ω
ω

)

= ‖f‖‖ω‖

(

(f̂ , p1 × f̂)

(

p2 × ω̂
ω̂

)

+ (z1+z2)f̂ · ω̂

)

,

where f̂ = f/‖f‖ and ω̂ = ω/‖ω‖. The first summand is equal to −s · d sin α according to
Proposition 3.3.1. The second summand is equal to (z1+z2) cos α. �

A remark on reciprocal screws: Since the Plücker coordinates of an instantaneous twist
are written in a swapped order, the inner product w · q̇ is equivalent to the reciprocal product
of the screws associated with w and q̇,

w · q̇ = (f, p1 × f + z1f)

[

O I
I O

] (

ω
p2 × ω + z2ω

)

.

When the reciprocal product of two screws is zero, the two screws are said to be reciprocal.

This situation has a special significance when the screws are associated with w and q̇. It
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Figure 3.2: (a) Tq0
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means that w·q̇ = 0, or in physical terms, that the wrench w cannot impede the instantaneous
motion of B along q̇. This fact will be key for characterizing the mobility of B with respect
to the surrounding fingers O1 . . .Ok.

Graphical depiction of the c-obstacle tangent space. The formula for w · q̇ can be
used to characterize the c-obstacle tangent space. When w is generated by a force aligned
with B’s contact normal at x, n(x), the collection of tangent vectors satisfying w · q̇ = 0
spans the c-obstacle tangent space. Formally speaking, the c-obstacle tangent space is given
by Tq0

S = {q̇ ∈ Tq0
IRm : η(q0) · q̇ = 0}, where η(q0) is the c-obstacle normal at q0. As

discussed in the previous section, η(q0) can be interpreted as the wrench generated by a
unit-magnitude normal force acting on B at x, so that w = η(q0). Hence Tq0

S consists of
tangent vectors satisfying w · q̇ = 0, where w = η(q0). Since the wrench screw of a pure
force has a vanishing pitch, z1 = 0 for the wrench screw of η(q0). Assuming that the frames
FW and FB share a common origin at the configuration q0, the screw axis of the wrench
w = η(q0) coincides with the normal line at the contact point x (see exercise). Substituting
f =n(x) and z1 =0 in the formula for w · q̇ gives

Tq0
S = {q̇ ∈ Tq0

IRm : s·‖ω‖d sin(α) = ‖ω‖z2 cos(α)}, (3.6)

where (d, α, z2) are the parameters of the instantaneous twist representing q̇, expressed rel-
ative to the contact normal line. Note that ‖ω‖ appears on both sides of (3.6). Hence when
an instantaneous screw motion satisfies the equation, it does so for all magnitudes ‖ω‖ ∈ IR.
We now discuss the implication of this formula for the finger c-obstacles associated with
planar grasps.

Example—the tangent plane of a finger c-obstacle in 2D case. Let us embed the
planar environment as the (x, y) plane in IR3. Let P denote the horizontal plane containing
the environment, and let e = (0, 0, 1) denote a unit vector perpendicular to P. The linear
velocity of B is now the vector (v, 0) tangent to P. The rotational velocity of B is now
the vector ωe, where ω ∈ IR is B’s angular velocity within P . The instantaneous twists of
B have zero pitch, since z2 = ω((v, 0) · e) = 0. All tangent vectors in Tq0

IR3 are therefore



pure instantaneous rotations about points of P . Let us now determine which instantaneous
rotations correspond to Tq0

S. Since e is orthogonal to the contact normal line, sin(α) = 1.
Substituting z2 =0 and sin(α)=1 in (3.6) gives

Tq0
S = {q̇ ∈ Tq0

IR3 : d = 0},

where we cancelled out the sign parameter s = ±1. It follows that Tq0
S consists of instan-

taneous rotations of B about all points along the contact normal line,

Tq0
S =

{

q̇ = ‖ω‖

(

p × e

e

)

: ω∈IR, p=x+ρn(x) for −∞ ≤ ρ ≤ ∞

}

,

where p parametrizes the contact normal line in terms of a scalar ρ. This characterization
of Tq0

S is depicted in Figure 3.2(a). Note that instantaneous rotations of B about points at
infinity are translations along the tangent at the contact point with O. Also note that Tq0

S
is parametrized by two scalars, ρ and ‖ω‖, which is consistent with the fact that Tq0

S is a
two-dimensional plane.

Remark: The halfspace of Tq0
IRm bounded by Tq0

S and pointing away from CO at q0

consists of all tangent vectors q̇ ∈ Tq0
IRm satisfying the inequality η(q0) · q̇ ≥ 0. In the 2D

case these are instantaneous clockwise rotations about points on the right side of the contact
normal line, and instantaneous counterclockwise rotations about points on the left side of
the contact normal line, as depicted in Figure 3.2(b). Note that instantaneous rotations
about points on the contact normal line are bi-directional, as these rotations correspond to
tangent vectors in Tq0

S.

Exercise: Consider the halfspace of tangent vectors pointing away from CO at q0, given by
{q̇∈Tq0

IRm : η(q0) · q̇ ≥ 0}. Justify the characterization of this halfspace as clockwise rota-
tions of B about points on the right side of the contact normal line, and as counterclockwise
rotations of B about points on the left side of the contact normal line (see in Figure 3.2(b)).

Solution: Based on Lemma 3.3.3, η(q0)·q̇ = −s·‖ω‖d, where s is the sign of the inner product
(p2−p1) · (l̂1 × l̂2). In our case p1 = x, l̂1 = (n(x), 0), and l̂2 = sgn(ω)e. Hence l̂1 × l̂2 is thus
l̂1 × l̂2 = sgn(ω)(t(x), 0), where t(x) is the unit tangent at x such that {(t(x), 0), (n(x), 0), e}
is a right-handed triplet. The inequality η(q0) · q̇ ≥ 0 is thus equivalent to the inequality
−sgn(ω)(p2−x) · t(x) ≥ 0. The latter inequality is linear in p2, and therefore defines two
halfplanes according to the sign of ω. When sgn(ω) = +1 the instantaneous rotations
are counterclockwise, and in this case p2 lies in the halfplane (p2−x) · t(x) ≤ 0. When
sgn(ω) = −1 the instantaneous rotations are clockwise, and in this case p2 lies in the halfplane
(p2−x) · t(x) ≥ 0.

C-Obstacle Tangent Space—3D case. In order to depict the c-obstacle tangent space in
the 3D case, we need to become acquainted with the notion of linear subspaces of lines. These
are collections of spatial lines which correspond to linear subspaces in Plücker coordinates. In
particular, a two-dimensional linear subspace spanned by the lines (l̂1, p× l̂1) and (l̂2, p× l̂2)
is a flat pencil. It is the collection of all spatial lines passing through p and embedded
in a plane spanned by (l̂1, l̂2). A three-dimensional linear subspace spanned by the lines
(l̂1, p × l̂1),(l̂2, p × l̂2),(l̂3, p × l̂3) is a solid pencil. It is the collection of all lines passing
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through p along all spatial directions. The two pencils are the simplest line complexes. Other
linear subspaces of lines will appear in subsequent chapters as a means for characterizing
equilibrium grasps and postures.

Let l denote the contact normal line. The c-obstacle tangent space in the 3D case consists
of all instantaneous twists satisfying the equation s ·d sin(α) = z2 cos(α). The variables in
this equation are the distance d and angle α of the twist lines with respect to l, together
with their pitch z2. We shall interpret the equation as specifying the pitch via the formula
z2 = s ·d tan(α), where d and α are free variables. Let us now consider the collection of
twist lines parametrized by the distance parameter d. The set of points x having a fixed
positive distance from l is a cylinder of radius d centered on the contact normal line (the
case of d = 0 is considered below). Let x be a point on the cylinder of radius d > 0. The
collection of spatial lines passing through x and having a minimal distance d from l is a flat
pencil with base point x, such that the pencil is tangent to the radius-d cylinder at x, as
depicted in Figure 3.3(a). The lines of the flat pencil are parametrized by their angle α with
respect to the line l. Note that each twist line has a specific pitch determined by the formula
z2 = s·d tan(α).

The special case of d = 0 corresponds to points x which lie on the line l. The twist lines
at such points are the union of the flat pencils on neighboring cylinders whose radius d
approaches zero. Since the flat pencils completely surround each point x on l, their union
is a solid pencil based at x. Since z2 = d tan(α) = 0 along l, all lines of the solid pencil
have zero pitch and are therefore pure instantaneous rotations; see Figure 3.3(b). Note
that instantaneous rotations about lines parallel to the tangent plane at the contact point
become instantaneous translations as x moves to infinity along the line l. To summarize, the
instantaneous twists corresponding to Tq0

S consist of flat pencils tangent to the cylinders



centered on the line l, as well as solid pencils strung along l, as depicted in Figure 3.3(a)-(b).

Finally, let (ρ, ϕ) parameterize each cylinder and let (t1, t2) be orthogonal unit tangent vec-
tors at x, as depicted in Figure 3.3(a). The collection of radius-d cylinders is parameterized

by p(ρ, d, ϕ) = x + ρn(x) + d[t1 t2]
„

cosϕ

sin ϕ

«

. The direction of the lines comprising each flat

pencil is parametrized by l̂(ϕ, α) = cos(α)n(x) + sin(α)[t1 t2]
„

−sinϕ

cos ϕ

«

. The parametrization

of Tq0
S in terms of instantaneous twists is thus given by

Tq0
S =

{

q̇ = ‖ω‖

(

l̂(ϕ, α)

p(ρ, d, ϕ) × l̂(ϕ, α)

)

: d, ρ∈IR+, ω, ϕ, α∈IR

}

,

where IR+ denotes the positive reals. We see that Tq0
S is spanned by five twist parameters,

which is consistent with the fact that it is a five-dimensional linear space.

The pitch z2 need not be zero when cos α = 0. I.e, twist lines parallel

to the tangent plane at x can have an arbitrary z2.
ToDo

Bibliographical Notes

The terms wrench and twist are discussed in a paper by B. Roth [3], titled “screws, motors,
and wrenches that cannot be bought in a hardware store.” Line geometry is the main tool
used to analyze the kinematics of open and closed chain mechanisms e.g., [?, 5]. Recom-
mended sources for line geometry in the context of mechanism theory is McCarthy’s [1] and
Selig’s [4] books.

Exercises

Exercise: The Plücker coordinates of a spatial line l are defined as the vector (l̂, p× l̂)∈IR6.
Provide a geometric interpretation for the term p × l̂.

Solution: The term p × l̂, traditionally called the line’s “arm,” is the vector orthogonal to
l and having its tip on l.

Exercise 3.recip: Prove by direct computation the reciprocal product formula specified in
Proposition 3.3.1.

Solution: By definition of the reciprocal product, (l̂1, p1 × l̂1) · (p2 × l̂2, l̂2) = l̂1 · (p2 × l̂2) +
(p1× l̂1)· l̂2. Since l̂1 ·(p2× l̂2) = −p2 ·(l̂1× l̂2) and (p1× l̂1)· l̂2 = p1 ·(l̂1× l̂2) by the triple scalar
product identity, (l̂1, p1 × l̂1) · (p2 × l̂2, l̂2) = −(p2−p1) · (l̂1 × l̂2). In the latter inner product
l̂1 × l̂2 is orthogonal to l1 and l2. Since p1 and p2 may freely vary along l1 and l2 without
affecting the inner product, we may assume that the segment p2−p1 is collinear with l̂1 × l̂2,
so that ‖p2−p1‖ = d. Based on this argument, −(p2−p1) · (l̂1 × l̂2) = −s‖p2−p1‖‖l̂1 × l̂2‖ =



−s · d sin(α), where s = ±1 is the sign of (p2−p1) · (l̂1 × l̂2) and α is the angle between l̂1
and l̂2.

Exercise: The collection of all spatial lines in IR3 forms a smooth four-dimensional manifold
in IR6. Justify this statement by locally parametrizing the spatial lines in terms of four scalar
parameters.

Solution: Since the collection of spatial lines forms a four-dimensional manifold, every line
l is surrounded by a neighborhood of lines parametrized by four scalar parameters. Let l
have a direction l̂ ∈ S2 (S2 being the unit sphere), and let L be the plane orthogonal to l̂
through the origin of IR3. The local neighborhood of l in the four-dimensional manifold can
be parametrized by the lines’ intersection point with L in the vicinity of the origin, together
with a local neighborhood of directions surrounding l̂ on S2.

Exercise: The Plücker coordinates of l are given by (l̂, p × l̂)∈ IR6, where p is a point on l
and l̂ is the unit direction of l. Since the collection of spatial lines forms a four-dimensional
manifold, the Plücker coordinates contain redundancies. Identify the two scalar constraints
which are always satisfied by the Plücker coordinates in IR6.

Solution: Let x1, . . . , x6 be the coordinates of IR6. The first three coordinated represent a
unit magnitude direction and hence must lie on the unit sphere. The first scalar constraint
is thus x2

1 + x2
2 + x2

3 = 0. Since l̂ · (p × l̂) = 0, the second scalar constraint is given by
x1x4 + x2x5 + x3x6 = 0.

Exercise: Let l1, l2, l3 be three planar lines having 2D Plücker coordinates li = (l̂i, pi × l̂i)
for i = 1, 2, 3. Prove that the three lines intersect at a common point iff

det

[

l̂1 l̂2 l̂3
p1 × l̂1 p2 × l̂2 p3 × l̂3

]

= 0.

Solution: Let the three lines be embedded in the x3 = 1 plane of IR3, where (x1, x2, x3) are
the coordinates of IR3. Let P1,P2,P3 be the planes through the origin of IR3 determined by
the three lines, as depicted in Figure 3.1(b). The three lines intersect at a common point in
IR2 iff P1,P2,P3 intersect along a common line in IR3. The latter condition is equivalent to
the requirement that the planes’ normals be linearly dependent. The pair {(pi, 1), (l̂i, 0)} is
a basis for P i (i = 1, 2, 3). Hence the normal to P i is given by (pi, 1)× (l̂i, 0) = (Jl̂i, pi × l̂i)
(i = 1, 2, 3). The three normals are linearly dependant iff

det

[

Jl̂1 Jl̂2 Jl̂3
p1 × l̂1 p2 × l̂2 p3 × l̂3

]

= − det

[

l̂1 l̂2 l̂3
p1 × l̂1 p2 × l̂2 p3 × l̂3

]

= 0.

Exercise: Determine the screw axis l and the pitch z of the wrench generated by a pure
force f acting on B at a point x = Xb(q0). Under what condition on the frames FW and FB

the screw line l can be interpreted as the force line through x?

Solution: The wrench generated by a pure force f acting on B at pointx = Xb(q0) is given
by w = (f, R0b×f). Hence its screw axis is the line l = (f̂ , R0b× f̂ ). Since x = R0b+d0, the
frames FW and FB must share a common origin at q0. In this case d0 = ~0, and the wrench
can e written as w = (f, x × f). The screw axis of this wrench is the line l = (f̂ , x × f̂),
which passes through the contact point x along the force direction f̂ .
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