


Chapter 4

Rigid Body Equilibrium Grasps

Any grasping system ought to fulfill three requirements. First, the fingers must hold the
object at an equilibrium grasp. Second, the grasp should be stable with respect to arbitrary
small position and force perturbations. Third, the grasp should withstand finite disturbance
sets serving as a model for the intended application. This chapter focuses on the equilibrium
grasp requirement. The chapter begins with a description of the common rigid-body contact
models. Each contact model is associated with a particular collection of forces that can
be transmitted at a rigid-body contact. The chapter next focuses on the multi-contact
setting where k finger bodies O1 . . .Ok hold an object B at an equilibrium grasp. The
chapter introduces the grasp map, which gives the net wrenches that can be applied to B
by varying the finger forces at the contacts. The chapter then formulates the equilibrium
grasp condition: a k-contact arrangement forms a feasible equilibrium grasp if some finger
force combination satisfying the contact model constraints can affect a zero net wrench on
the grasped object. The chapter subsequently discusses the notion of internal squeeze forces
associated with an equilibrium grasp. Finally, a moment labeling technique for depicting the
net wrenches that can be affected by planar grasps is described. This representation will
prove useful in subsequent chapters.

4.1 Rigid Body Contact Models

In general, a contact model describes the possible forces that can be transmitted between
a finger body and the grasped object when the two are in contact. A rigid body contact
model describes the possible physical interaction when the two bodies are assumed to be
perfectly rigid. This section introduces the most commonly used rigid body contact models.
While no real objects are truly rigid, rigid body models provide an excellent idealization in
many grasping and fixturing applications. However, high load applications such as workpiece
machining as well as fingertips made of compliant material require a consideration of contact
deformations. Part IV of this book focuses on compliant contact models and their use in
grasp and fixture analysis.

We shall focus on the physical interaction between two perfectly rigid bodies, the object
B and a finger body Oi, under the assumption that the two bodies are in point contact.
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Figure 4.1: Depiction of contact reference frames and body-fixed reference frame.



In the following description of the contact models, we assume that B lies at its nominal
configuration q0, with the contact point located at xi, as expressed in the world frame
coordinates. We also assume that B’s frame origin coincides with the world frame origin
at q0. Under this assumption the torque generated by a force fi acting on B at xi is simply
xi×fi (see Lemma ?? and the exercises below). We will describe the inter-body forces using
a local reference frame based at the ith contact. One axis of this frame is the inward pointing
unit normal to B at xi, denoted ni. The remaining two axes are unit tangents to B at xi,
denoted si and ti, such that {si, ti, ni} forms a right-handed frame (see Figure 4.1). The
following are the most common rigid body contact models.

1. The Frictionless Point Contact Model

The simplest rigid body contact model assumes that the contact is entirely frictionless.
While no practical contact between two bodies is truly frictionless, this model serves as a
conservative approximation in cases of low contact friction and variable surface traction.
Additionally, as we shall see in Part II, many problems in the analysis of frictionless grasps
can be answered with purely geometric methods. Therefore the study of frictionless grasps
serves as a convenient starting point for a more general study of grasping mechanics.

At a frictionless contact, the inter-body force can only be sustained along the direction
normal to the contacting bodies’ surfaces. The contact force is thus given by fi = fn

i ni,
where fn

i is a non-negative scalar. Note that fn
i is non-negative because a finger tip can

only apply a unilateral pushing force at the contact. The collection of forces supported by a
frictionless point contact, denoted Ci, is thus given by

Ci = {fi∈IRm : fi = fn
i ni for fn

i ≥ 0} ,

where m = 2 in 2D and m = 3 in 3D. Note that Ci forms a half-line, or a one-dimensional
cone, based at xi and pointing along B’s inward normal ni.

2. The Point Contact with Coulomb Friction Model

Any real bodies in contact experience friction, which is a force resisting the relative motion
of the contacting bodies. The field of tribology studies the science and technologies related
to interacting surfaces in motion. Complex tribological models that predict the frictional
forces between two bodies may include electrostatic effects, weak chemical bonding effects,
and mechanical interaction of microscopic asperities. These models, while accurate, are too
cumbersome for practical grasp and fixture analysis.

Charles-Augustin Coulomb introduced a simple empirical friction model which was derived
from experiments like the one depicted in Figure 4.2(a). Consider a block of mass m made
from material A (say aluminum) resting under the influence of gravity on a flat surface made
from material B (say steel). We assume that the materials have been cleaned of any surface
residue and dirt, and that both materials are dry. Starting at time t=0, the block is pulled
with a force fp parallel to the horizontal surface. Imagine that the pulling force is linearly
increased from zero. Since the block is under the influence of gravity, a frictional reaction
force, fr, will arise from the interaction of the two contacting surfaces. Figure 4.2(b) shows
a typical graph of fr versus fp that results from such experiments.



Figure 4.2: (a) A schematic diagram of Coulomb’s friction experiment. (b) A typical plot of
the normalized reaction force fr versus the pulling force fp, showing both static and dynamic
friction effects.



Initially the block remains at rest, even under the influence of an increasing pulling force.
This implies that the frictional reaction force fr exactly counterbalances the pulling force
fp during the initial ramp up of the applied force. However, as the increasing pulling force
reaches a magnitude f ∗

p (whose value depends upon the block’s mass and the choice of
materials A and B), the block begins to slide in the direction of fp. Experiments with
different block masses (but the same materials), show that the ratio f ∗

p /mg is roughly a
constant, which is termed the Coulomb static friction coefficient, µs. Once the block begin
to slide, the magnitude of fr drops slightly, but remains constant even when fp is further
increased. The reaction force magnitude is modeled in this case by the product of a constant
dynamic Coulomb friction coefficient, µd, times mg. In most materials the difference between
µs and µd is small, and to a reasonable approximation a single Coulomb friction coefficient
value, µ = µs, is used to model both effects. Moreover, our analysis of frictional rigid body
grasps will focus on the limits of frictional force that can be obtained when the finger tips
do not slide upon the object’s surface. Therefore, µ = µs will form the basis of the frictional
contact models used throughout this book.

The friction coefficient is a non-negative parameter whose value varies across material types
and increases with surface roughness. The friction coefficient of metal-on-metal contacts
typically varies in the range of 0.1 ≤ µ ≤ 0.5. For teflon-on-teflon contacts the friction
coefficient can be as low as µ=0.04. A contact between rubber and common materials such as
plastic, metal, or wood achieves high friction coefficient values in the range of 1.0 ≤ µ ≤ 2.0.

Exercise. Figure 4.3 shows a simple procedure to estimate the Coulomb friction

coefficient. Place a block of mass m on the inclined slope which is inclined

at an angle α with respect to the direction of gravity. As the angle of the

slope is slowly increased, the block begins to slide a critical angle, α∗. Show

that the critical angle can be related to the Coulomb friction coefficient, µ,
as follows:

α∗ = tan−1(µ) . (4.1)

Solution. Gravity induces a force normal to the contact surface whose magnitude

is fn = mg cos α. Similarly, gravity also ‘‘pulls’’ or ‘‘pushes’’ the block down

the slope with a force of magnitude fp = mg sin α. If the block is stationary

when the slope angle is α, then the frictional reaction force, fr, is equal to

fp, and the contact obeys the no-slip condition of the Coulomb friction law: |fp| ≤
µfn. As the slope angle is slowly increased, the block will begin to slide at

a critical angle, α∗. At this critical angle, fr = µfn. This implies that mg sin α∗ =
µmg cos α∗, which gives (4.1). We shall see in Chapter 5 that this friction angle,

α∗, plays an important role in grasp and fixture analysis.

Returning to the contact model, let (f s
i , f t

i , f
n
i ) be the tangential and normal components of

the force fi with respect to the ith contact frame, (f s
i , f t

i ) = (fi · si, fi · ti) and fn
i = fi · ni.

Under the static Coulomb friction law, the finger tip can still apply only a unilateral pushing
force along the contact normal direction, so that fn

i ≥ 0 as before. The presence of friction
additionally allows the finger to independently apply tangential force components. However,
if the magnitude of the tangential force becomes too large, the finger tip will begin to slide
on the object surface. The Coulomb friction model states that the finger tip will not slip



Figure 4.3: An alternative procedure to empirically determine the Coulomb friction coeffi-
cient.

Figure 4.4: The friction cone associated with the frictional point contact model.

on B’s surface as long as ‖f s
i si+f t

i ti‖ ≤ µfn
i , where µ is the friction coefficient. Once the

finger force violates this condition, the finger tip will start to slide on B’s surface, with the
magnitude of the tangent reaction force satisfying the equality ‖f s

i si+f t
i ti‖ = µfn

i , such that
the direction of the tangent reaction force opposes the finger’s sliding direction.

Based on this discussion, the collection of forces supported by a frictional point contact,
denoted Ci, is given in the 3D case by

Ci =
{

fi∈IR3 : fi · ni ≥ 0,
√

(fi ·si)2+(fi ·ti)2 ≤ µfi ·ni

}

,

where {si, ti, ni} is the local frame at the ith contact and µ is the friction coefficient. The
corresponding collection of forces is given in the 2D case by

Ci =
{

fi∈IR2 : fi · ni ≥ 0, |fi · ti| ≤ µfi ·ni

}

,

where {ti, ni} is the local frame at the ith contact and µ is the friction coefficient. See
Figure 4.6 for an example of a planar grasp making use of frictional point contacts.



Figure 4.5: Idealized geometry of a contact patch associated with a soft point contact model.

Friction Cone Interpretation. In general, a set C forms a cone if for any v1, v2 ∈ C the
positive linear combination λ1v1+λ2v2 lies in C for all λ1, λ2 ≥ 0. The collection of forces
Ci has a nice geometric interpretation in terms of a friction cone (Figure 4.4). Consider the
cone whose apex is located at the contact point xi, and whose central axis is aligned with
B’s inward pointing normal ni. Let α = tan−1(µ) be the half-angle of this cone. As long as
the force applied by the finger lies inside this friction cone, the finger tip will not slip at the
contact. When the finger tip applies a force outside the friction cone, it will slide tangentially
along the surface of B. The finger force in this case consists of a force component which acts
on B along the friction cone edge, and a complementary tangential force which affects the
finger’s own dynamics during sliding.

3. The Soft Point Contact Model

While this chapter focuses on rigid body contact models, let us consider what happens when
a finger tip which is made from a compliant material comes into contact with a solid object.
The finger material will deform in the vicinity of the contact, resulting in a contact “patch”
rather than a unique point of contact (see Figure 4.5). In the 3D case, the contact will
be established along a two-dimensional region which can sustain some torsional forces of
interaction about the contact normal. The soft point contact model approximately accounts
for these torsional forces within the rigid body modeling framework. The potential effect of
finger tip softness, adapted to the rigid body point contact framework, adds to the frictional
point contact model an independently modulated torque, τn

i , which acts about the contact
normal. This torque is physically generated when a finger tip rotation about the contact
normal is opposed by the integrative effect of Coulomb friction acting at each point in the
contact patch area. To a rough approximation, the norm of this torque is bounded according
to: |τn

i | ≤ γfn
i , where γ > 0 is called the rotational friction coefficient. The collection of

forces and torques supported by a soft point contact model is thus given by

Ci =
{

(fi, τ
n
i )∈IR3×IR : fi · ni ≥ 0,

√

(fi ·si)2+(fi ·ti)2 ≤ µfi ·ni, |τn
i | ≤ γ

}

,

where {si, ti, ni} is the local frame at the ith contact, and µ and γ are the two friction
coefficients. Note that Ci forms a generalized friction cone in the space of force and torque
components. A two-finger grasp making use of soft point contacts is depicted in Figure 4.7.

The rotational friction coefficient. While the Coloumb friction coefficient is a unitless
parameter, the relation |τn

i | ≤ γfn
i indicates that γ has units of length. A rough approxi-

mation for γ can be obtained as follows. Let us assume that the contact area is a planar
disc of radius R, centered at the ith contact and tangent to B at the contact. Let us fur-
ther assume that the normal inter-body force component, fn

i , is evenly distributed over the



contact area (it is actually maximal at xi and decays to zero on the disc’s boundary). The
normal force at each point of the contact area is thus fn = fn

i /(πR2). Let the finger tip now
attempt to rotate about the contact normal, ni, such that all points of the contact area are
on the verge of slipping. Assuming that Coloumb friction acts at the individual points of
the contact area, the torque generated at the individual points about ni satisfies the equality
|τ(r)| = µrfn, where r ∈ [0, R]. When this torque is integrated over the contact area, the net
torque generated by the contact is |τn

i | = 2

3
µRfn

i . It follows that γ = 2

3
µR, where R is the

contact area radius and µ is the Coloumb friction coefficient. We see that γ is proportional
to R which has length units.

4.2 The Grasp Map
Our objective in this section is to develop an expression for the net wrench affected on B
by the k fingers O1 . . .Ok. Let wi be the wrench generated by the ith finger, described in
the fixed world reference frame. It consists of a wrench generated by the finger force, fi,
together with a possible torque τn

i about B’s contact normal ni,

wi =

(

fi

xi × fi

)

+

(

~0
τi

)

=

[

I
[

xi×
]

]

fi +

(

~0
ni

)

τn
i .

Note that in the 2D case [xi×] = xT
i J is a row vector. The net grasping wrench affecting B

is simply the sum of the wrenches generated by the individual fingers:

w =
k
∑

i=1

wi =

[

I
[

x1×
] · · · I

[

xk×
]

]







f1

...
fk






+

[

~0
n1

· · ·
~0
nk

]







τn
1

...
τn
k






, (4.2)

where the second summand appears only under the soft point contact model.

Each of the finger forces and torques in (4.2) has an associated set of constraints: Ci describes
the forces and torques that can be supported at the ith contact. The composite generalized
friction cone for the grasp, defined by C1 × · · · × Ck,

1 describes the set of all feasible forces
and torques at the contacts. It follows that (4.2) defines a mapping, called the grasp map,
which maps the forces-and-torques in C1 × · · · × Ck to the net grasping wrench affecting B.
The net wrench affecting B varies in the cotangent space w ∈ T ∗

q0
IRm (m=3 or 6), which we

shall call wrench space. A formal definition of the grasp map follows.

Definition 1 (Grasp Map). Let rigid finger bodies O1 . . .Ok contact a rigid object B. Let
Ci be the cone of feasible forces and torques at the ith finger contact. The rigid body grasp
map is the linear map G : C1× · · · ×Ck → T ∗

q0
IRm specified by (4.2),

w =

[

I
[

x1×
] · · · I

[

xk×
]

]







f1

...
fk






+

[

~0
n1

· · ·
~0
nk

]







τn
1

...
τn
k






, (4.3)

1Given subsets S1, . . . ,Sk of IRn, the product S1× · · · ×Sk is the subset of IRn× · · · ×IRn defined by
S1×· · ·×Sk = {(s1, . . . , sk) : sk∈Sk for i=1 . . . k}.



Figure 4.6: A planar two-finger frictional grasp of an ellipse.

where the first summand appears in all three contact models while the second summand
appears only in the soft point contact model.

Recall that a linear map can be represented as a matrix in terms of bases for its domain
and image spaces. Let us obtain such a matrix representation for the grasp map G in terms
of force and torque components for the composite friction cone. Let p be the number of
independent force and torque components at each of the k contacts. Let f̄ i∈IRp denote the
corresponding vector of force and torque components, and let f̄ = (f̄ 1, . . . , f̄k) ∈ IRkp be
the composite vector of force and torque components. The m × kp matrix representing G,
denoted Ḡ, maps the composite vector f̄ to the net wrench affecting B, w = Ḡf̄ . Under the
frictionless point contact model, f̄ i = fn

i for i = 1 . . . k, and Ḡ is the m × k matrix:

Ḡ =

[

n1

x1 × n1

· · · nk

xk × nk

]

.

Note that Ḡ is fully determined by the contact locations, x1 . . . xk, and by the contact normals
n1 . . . nk. Under the frictional point contact model, say in the 3D case, f̄ i = (f s

i , f
t
i , f

n
i ) for

i = 1 . . . k, and Ḡ is the m × 3k matrix:

Ḡ =
[

Ḡ1 · · · Ḡk

]

where Ḡi =

[

si ti ni

xi × si xi × ti xi × ni

]

for i = 1 . . . k.

The grasp matrix associated with frictional contacts depends on x1 . . . xk as well as the
contact frames, {si, ti, ni} for i = 1 . . . k. Last, under the soft point contact model f̄ i =
(f s

i , f
t
i , f

n
i , τn

i ) for i = 1 . . . k, and Ḡ is the m × 4k matrix:

Ḡ =
[

Ḡ1 · · · Ḡk

]

where Ḡi =

[

si ti ni
~0

xi × si xi × ti xi × ni ni

]

for i = 1 . . . k.

Example: Figure 4.6 shows a planar two-finger grasp of an elliptical object along its major
axis, whose length is 2L. Assuming frictional point contacts, each finger can independently
modulate two force components. The grasp matrix is determined by the contact positions

x1 =(−L, 0) and x2 =(L, 0), and by the contact frames {t1, n1}=
{

„

0

−1

«

,
„

1

0

«

}

and {t2, n2}=
{

„

0

1

«

,
„

−1

0

«

}

. The net grasping wrench affecting the ellipse results from application of the



Figure 4.7: A two-finger grasp of a rectangular box where each contact is governed by the
soft finger model.

3 × 4 grasp matrix Ḡ on the four independent finger force components:

w =
[

Ḡ1 Ḡ2

]

(

f̄ 1

f̄ 2

)

=





0 1 0 −1
−1 0 1 0
L 0 L 0













f t
1

fn
1

f t
2

fn
2









.

Note that Ḡ =
[

Ḡ1 Ḡ2

]

has full rank for this grasp. It follows that the fingers can in
principle generate any desired net wrench on B. Equivalently, G maps the composite cone
C1 ×C2 onto B’s wrench space. This is an example of a force closure grasp, a topic which is
explored in Chapter Z.

Example: Figure 4.7 shows a 3D grasp involving two fingers grasping a rectangular box
at the center of opposite faces, where the box size is 2L. The two contacts are governed
by the soft point contact model. Each of the two fingers can independently control four
contact force components: normal force, two tangential force components, and torque about
the contact normal. The grasp matrix Ḡ is 6 × 8, and the net grasping wrench on B is:

w =
[

Ḡ1 Ḡ2

]

(

f̄1

f̄2

)

=

















1 0 0 0 1 0 0 0
0 0 1 0 0 0 −1 0
0 −1 0 0 0 1 0 0
0 L 0 0 0 L 0 0
0 0 0 1 0 0 0 −1
L 0 0 0 −L 0 0 0









































f s
1

f t
1

fn
1

τn
1

f s
2

f t
2

fn
2

τn
1

























Here, too, the matrix Ḡ =
[

Ḡ1 Ḡ2

]

has full rank, implying that the two fingers can generate
any desired net wrench on B. This is another example of a force closure grasp (see Chapter Z).

Exercise 5.7: Consider a planar two-finger equilibrium grasp having frictional contacts.
Can the 3 × 4 grasp matrix G of this grasp ever lose its full rank of three?

Solution: The grasp matrix represents the grasp map which is given by

w = w1 + w2 =

[

I
xT

1 J
I

xT
2 J

](

f1

f2

)

fi ∈ Ci for i = 1, 2

, where I is a 2 × 2 identity matrix and J =
»

0 −1

1 0

–

. Any linear combination of the upper

two rows has the form (v, v) ∈ IR4. The lower row can have the form (v, v) only when
x1 = x2, which is physically unrealizable. Therefore, the grasp matrix of any planar two-
finger equilibrium grasp with frictional contacts always have a full rank of three.



4.3 The Equilibrium Grasp Condition

Let us now characterize the situation where the fingers hold the object B at an equilibrium
grasp. We shall restrict our attention to the simplest scenario where B is influenced solely by
the fingers, without any external influences such as gravity. The maintenance of an equilib-
rium grasp under gravity will be discussed in subsequent chapters. A k-contact arrangement
forms a feasible equilibrium grasp if the fingers can apply non-vanishing forces and torques
consistent with the contact model, such that the net wrench affecting B is zero.

Definition 2 (Equilibrium Grasp). Let a rigid object B be contacted by rigid finger bodies
O1 . . .Ok at the points x1 . . . xk. The contact arrangement forms a feasible equilibrium
grasp under the frictionless/frictional point contact models if there exist non-zero forces
f1 . . . fk satisfying the condition:

G

(

f1.
.
.

fk

)

=

(

f1

x1 × f1

)

+ · · ·+
(

fk

xk × fk

)

= ~0 fi∈Ci for i=1 . . . k, (4.4)

where G is the grasp map and Ci is the cone of feasible forces at xi for i = 1 . . . k.

The contact arrangement forms a feasible equilibrium grasp under the soft point con-
tact model if there exist non-vanishing forces f1 . . . fk and torques τn

1 . . . τn
k satisfying the

condition:

G









f1

τn
1.
.
.

fk

τn

k









=

(

f1

x1 × f1 + τn
1 n1

)

+ · · ·+
(

fk

xk × fk + τn
k nk

)

= ~0 (fi, τ
n
i )∈Ci for i=1 . . . k,

where G is the grasp map and Ci is the generalized friction cone at xi for i = 1 . . . k.

Note that in the 2D case xi × fi = xT
i Jfi is a scalar. Since an equilibrium grasp involves

a balancing action of opposing forces and torques, all equilibrium grasps involve at least two
contacts. A feasible equilibrium grasp requires that G will map some non-vanishing combi-
nation of forces and torques to the zero wrench. This observation highlights an important
property of equilibrium grasps: in order to maintain an equilibrium, the contacts should
be selected such that G has a non-zero kernel. The forces and torques in the kernel of G
are called internal grasp forces, with the understanding that they possibly include internal
grasp torques about the contact normals. The internal grasp forces are discussed in the next
section.

Let us now interpret the equilibrium condition (4.4), associated with the “hard” point contact
models, directly in B’s wrench space. Let the ith wrench cone, W i, be the collection of
wrenches generated by the ith contact as its force varies in Ci, W i = {(fi, xi × fi) : fi∈Ci}.
Each W i forms a cone based at the wrench space origin. For instance, at a planar frictional
point contact Ci is bounded by two edges, and the corresponding wrench cone forms a
two-dimensional sector bounded by the wrenches generated by the friction cone edges; see
Figure 4.8. The collection of net wrenches that can be affected on B is the sum W1+· · ·+Wk.
This set still forms a cone in wrench space (see exercise). However, at a feasible equilibrium
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Figure 4.8: A frictional 2-contact arrangement which is not a feasible equilibrium grasp.
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Figure 4.9: A frictionless 3-contact arrangement which is a feasible equilibrium grasp.

grasp W1+ · · ·+Wk contains a non-trivial subspace passing through the wrench space origin.
The following examples illustrate this property.

Example: Consider the two-contact arrangement depicted in Figure 4.8(a). Assuming
frictional point contacts, the sum W=W1+W2 is a semi-infinite tetrahedral cone pointing
away from the origin; see Figure 4.8(b). It follows that this contact arrangement is not a
feasible equilibrium grasp.

Example: Next consider the three-contact arrangement depicted in Figure 4.9(a). Assuming
frictionless point contacts, each wrench cone is a semi-infinite ray aligned with the c-obstacle
normal ηi(q0) (i = 1, 2, 3). In this case the set W1+W2+W3 forms a two-dimensional subspace
passing through the wrench space origin; see Figure 4.9(b). This contact arrangement is
a feasible equilibrium grasp.

Essential Contacts: A contact is said to be essential for the grasp if it must generate a
non-vanishing force in order to maintain the equilibrium. When all k contacts are essential,
the sum W1+ · · ·+Wk becomes a (k−1)-dimensional subspace passing through the wrench
space origin. For instance, the three contacts in the grasp of Figure 4.9 are all essential, and
the set W1+W2+W3 spans a two-dimensional subspace. A graphical technique for depicting
the wrench cones associated with planar grasps, called moment labeling, is described at the
end of this chapter.



4.4 The Internal Grasp Forces

We have seen that the grasp map possesses a non-trivial kernel at an equilibrium grasp.2 If
the kernel of G is non-empty, the forces and torques in the kernel are called internal grasp
forces, as these forces and torques are absorbed by the grasped object without disturbing
the equilibrium grasp. We shall see in the next chapter that these internal forces play an
important role in high quality grasps.

Let us determine the dimension of the kernel of G under the various contact models and
discuss some examples which provide an intuitive feel for these forces. Let us first determine
the generic dimension of the kernel of G. Recall that Ḡ is the m×kp matrix representing G,
where m=3 or 6, k≥2 is the number of contacts, and p ≥ 1 is the number of force components
at each of the k contacts. When Ḡ has full rank, is rank is given by rank(Ḡ) = min{m, kp}.
Assuming that p and m are constant for a given grasping application, there are two cases
to consider according to the value of k. In the first case the number of contacts is small
such that kp ≤ m. In this case rank(Ḡ) = kp. Since the grasp map generates non-vanishing
equilibrium forces, it must have a non-empty kernel at the equilibrium grasp. Consider now
the contact arrangements obtained by locally perturbing the contacts of the equilibrium
grasp along the surface of B. Except for very rare situations, Ḡ would assume full rank at
the perturbed contact arrangements, such that its rank drops precisely by one at the nominal
equilibrium grasp. It follows that dim

(

ker(Ḡ)
)

= 1 in the case where kp ≤ m. Next consider
the case where the number of contacts is large such that kp > m. In this case rank(Ḡ) = m,
and consequently dim

(

ker(Ḡ)
)

= kp − m > 1.

Let us first characterize the internal forces under the frictionless point contact model. Each
contact can only modulate its normal force component, and Ḡ is m×k. As long as k ≤ m+1
i.e., 2 ≤ k ≤ 4 in 2D and 2 ≤ k ≤ 7 in 3D, the internal grasp forces span only a one-
dimensional subspace. This subspace consists of a coordinated modulation of the grasp’s total
preload, defined as the totality of the force magnitudes, fT =

∑k

i=1
fn

i (see exercise). The
dimension of the internal force subspace increases for higher numbers of contacts. However,
we shall see in subsequent chapters that k ≤ m + 1 contacts provide perfectly adequate
grasps for almost all rigid objects, even under slippery contact conditions.

Next consider the frictional point contact model. Under this model Ḡ is 3 × 2k in 2D
and 6 × 3k in 3D. Based on the generic formula, the internal forces span one-dimensional
subspace only in the case of k = 2 contacts, both in 2D and 3D. Much like the frictionless
case, these forces can only modulate of the total preload fT . For higher number of contacts,
dim
(

ker(Ḡ)
)

= 2k−3 in 2D and dim
(

ker(Ḡ)
)

= 3k−6 in 3D. It is interesting to observe that
in the 2D case 2k − 3 is precisely the number of bars required for interconnecting k point
masses such that the resulting structure forms a single connected rigid body (see exercises).
The internal forces associated with three frictional contacts are illustrated with the following
example.

Example: Consider a planar equilibrium grasp of an object B by three frictional contacts.
The grasp matrix Ḡ is 3 × 6 in this case, implying that Ḡ has a three-dimensional kernel of

2Recall that the kernel of a linear map G is the linear subspace satisfying Gv = ~0. The image of G is also
a linear subspace, and the rank of G is the dimension of this subspace.



Figure 4.10: Grasp of a planar equilateral triangular object using three frictional point
contacts.

internal grasp forces. The forces (f1, f2, f3) spanning the kernel are given by

ker(Ḡ) = span
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In contrast with the two-contact grasps, the internal grasp forces do not merely modulate
the equilibrium force magnitudes, but actually rotate the equilibrium force directions within
the permisible friction cones (see exercise 3.x).

Exercise: Consider a planar equilibrium grasp consisting of three frictional point contacts
on the midpoints of each face of an equilateral triangle (Figure 4.10).

(a) Construct the grasp, G, and show that it is full rank. Consequently, the null space of
G is a three-dimensional vector space.

(b) Show that the null space can be spanned by three basis vectors, where each internal
force basis vector physically corresponds to a pair of opposing forces of equal magnitude
applied along the line connecting the pair of contact points. Note that this result
generalizes to three point planar frictional grasps which do not necessarily have the
equilateral triangular geometry.

(c) Note that the internal force vectors in Part (a) may not lie inside the friction cones of
the contact, and therefore may not be feasible contact forces. Show that a null space
vector consisting of only normal forces at each contact (all with the same magnitude)
is feasible.

Solution. (a) Assign a reference frame whose origin is located at the point where the three
contact normal lines intersect, and whose orientation is parallel to that of the contact frame
of finger #1. In this reference frame, the grasp map takes the form:



G =

(

~n1
~t1 ~n2

~t2 ~n3
~t3

−D(~n1 × ~n1) −D(~n1 × ~t1) −D(~n2 × ~n2) −D(~n2 × ~t2) −D(~n3 × ~n3) −D(~n3 × ~t3)

)

=
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 (4.5)

where D = L/(2
√

3), and the set of contact forces are: ~f =
(

fn
1 f t

1 fn
2 f t

2 fn
3 f t

3

)T
. Note

that the first, second, and fourth column of this matrix are linearly independent vectors, and
thus the grasp map has full rank.

(b) Consider the application of equal forces, having magnitude F , along the line connecting
finger contacts points 1 and 2. The finger contact force in this case is:

~f = F
(√

3

2
−1

2

√
3

2

1

2
0 0

)T

. (4.6)

Direct multiplication of matrix (4.5) times the finger contact force vector (4.6) yields a zero
net wrench on the triangular object, confirming that this is an internal force vector. By
symmetry, the forces of equal magnitude along the lines connecting the other two possible
pairs of contact points can also be shown to be squeeze forces.

(c) A force of magnitude F applied along each of the three contact normals, ~f = F
(

1 0 1 0 1 0
)T

is a feasible contact force in the null space of the grasp map G in Equation (4.5).

Finally, under the soft point contact model the internal forces also include torques about the
contact normal. In this case Ḡ is 6×4k. Since k ≥ 2, the kernel of Ḡ is a (4k−6)-dimensional
subspace. Note that the internal forces and torques span at least a two-dimensional subspace,
as illustrated in the following example.

Example. Let us revisit the example where two soft point contacts grasp a rectangular box,
depicted in Figure 4.7. The grasp matrix Ḡ is 6× 8 in this example, and its kernel is a two-
dimensional subspace. One basis vector of the kernel is given by (f s

1 , f t
1, f

n
1 , τn

1 , f s
2 , f t

2, f
n
2 , τn

1 ) =
(0, 0, 1, 0, 0, 0, 1, 0). It corresponds to opposing finger forces squeezing B along the line con-
necting the two contact points. The other basis vector of the kernel is given by (f s

1 , f
t
1, f

n
1 , τn

1 ,
f s

2 , f t
2, f

n
2 , τn

1 ) = (0, 0, 0, 1, 0, 0, 0, 1). This particular basis vector is possible only under the
soft point contact model, as it consists of opposing finger torques squeezing B about the line
connecting the two contact points.

Let us end this section with a physical interpretation of the internal grasp forces associated
with k frictional contacts.

Physical interpretation of the internal grasp forces: First consider the planar grasps.
The grasp matrix associated with k frictional point contacts is a 3× 2k matrix. This matrix
has generically full rank, and its kernel is a (2k−3)-dimensional subspace of internal grasp
forces, (f1, . . . , fk) ∈ ker G. The dimension of the kernel of G, 2k−3, happens to be the
minimum number of rigid bars required to connect k point masses into a rigid planar structure



Figure 4.11: (a) A rigid structure connecting k = 8 points with 3k−6 = 18 bars. (b) Its
transformation to a rigid structure connecting k=7 points with 3k−6=15 bars.

(see exercises 3.19-3.20 for a formal proof). This observation can be intuitively explained
as follows. Suppose the object B is a planar graph whose nodes are the k point masses
and whose edges are rigid bars connected by revolute joints at the nodes. When the graph
forms a rigid structure, the bars can absorb any combination of internal grasp forces acting
at the k nodes. In this case any combination of internal grasp forces acting at the k nodes,
(f1, . . . , fk)∈ker G, can be expressed as a sum of opposite forces acting along the 2k−3 bars.
The dimension of the kernel of G is therefore at most 2k−3. Now suppose the structure
is minimal, so that each of the 2k−3 bars is necessary for maintaining rigidity. When any
single bar is removed, the structure is incapable of absorbing at least one combination of
internal grasp forces. The 2k−3 bars thus represent a basis for the subspace of internal grasp
forces of the k-finger grasp.

In the case of spatial grasps, the grasp matrix associated with k frictional point contacts is
a 6 × 3k matrix. When the grasp involves k ≥ 3 fingers, G has generically full rank and a
(3k−6)-dimensional kernel of internal grasp forces, (f1, . . . , fk) ∈ ker G. This dimension is
again the minimum number of rigid bars required to connect k spatial point masses into a
rigid spatial structure. Let us demonstrate this fact with a construction procedure. Let the
object B be a spatial graph whose nodes are the k point masses, and whose edges are rigid
bars connected by spherical joints at the nodes.3 Since each rigid bar is attached to spherical
joints at its endpoints, one cannot prevent self-rotation of the bar about its axes. Hence we
will construct a spatial graph whose bars freely rotate about their axes, such that the graph
as a whole forms a rigid sstructure. The construction is based on the fact that a triangle
with spherical joints forms a rigid structure up to self-rotation of its bars. When k is even,
split the k point masses into two sets of k/2 points, then embed these sets in two parallel
planes. Next connect the points of each subset into a rigid planar graph as discussed above.
This task can be achieved with a total of k−3 bars per planar graph. Next arrange the
two planar graphs on top of each other and connect the vertically aligned points with k/2
vertical bars. Finally, add a diagonal bar within each vertical rectangle using k/2 additional
bars. The resulting spatial graph is triangulated and has a total of 2(k−3) + k

2
+ k

2
= 3k−6

bars. When k is odd, first construct the spatial graph for k + 1 point masses, then contract
a pair of adjacent points and their connecting bar to a single point. During the contraction,
identify each pair of bars that connect the two original points with a common third point of
the structure into a single bar. The resulting spatial graph is still triangulated and has 3k−6
bars. As verified in exercises 4.x-4.y, in both cases the structure is rigid up to self-rotation
of the bars, and contains the minimum number of bars required for structural rigidity.

Example: The structure connecting k = 8 point masses into a rigid body is shown in
Figure 4.11(a). Note that this structure consists of 3k−6=18 bars. Let us next contract the
point x8 toward x7 along their connecting bar, as depicted in Figure 4.11(a). During this
contraction the pairs of bars marked as ’a’ and ’b’ merge into two single bars. The resulting

3A spherical joint can be imagined as a bar ending with a ball which freely rotates inside a spherical
socket. This joint has three degree of freedom, since the bar can point in any direction as well as rotate
about its axis.



seven-point structure possesses 3k−6 = 15 bars as shown in Figure 4.11(b). The resulting
structure graphically represents a basis for the subspace of internal grasp forces associated
with grasps whose contacts are located at the seven point masses.

4.5 The Moment Labeling Technique

This section describes a moment labeling technique which allows us to graphically depict the
collection of grasp wrenches affecting B in planar contact arrangements.4 The technique can
graphically determine if a contact arrangement is a feasible equilibrium grasp, and if it is a
feasible equilibrium, to determine the dimension of the subspace spanned by the net grasp
wrenches. The technique is also useful in non-static applications such as part insertion [1].

Recall that the collection of net grasp wrenches is the sum of the finger wrench cones,
W1 + · · · + Wk. The moment labeling technique is based on a duality between the sum of
the cones and the intersection of their polar cones. Let us first describe this duality and
then apply it to our problem. Let W be a cone based at the origin of IRm. That is, W has
the property that for any w1, w2 ∈W the positive linear combination s1w1+w2v2 lies in W
for all s1, s2 ≥ 0. It is intuitively clear that the intersection of two cones is still a cone based
at the origin. The sum of two cones, which is equivalent to their convex hull,5 is the set
W1+ W2 = {w1 + w2 : w1 ∈ W1, w2 ∈ W2}. The sum of two cones is also a cone based at
the origin. The cone polar to W, denoted W ′, consists of all vectors pointing away from W,

W ′ = {v ∈ IRm : w · v ≤ 0 for all w ∈ W} . (4.7)

For instance, when W is a two-dimensional sector based at the origin of IR3, its polar cone W ′

is the three-dimensional wedge depicted in Figure 4.12(a). The following lemma describes a
duality property between cone summation and polar cone intersection.

Lemma 4.5.1 (Cone Duality). Let W1 and W2 be two cones based at the origin of IRm, and
let W ′

1 and W ′
2 be their polar cones. The sum W1+W2 is polar to the intersection W ′

1 ∩W ′
2.

Proof: Let v be a vector in the intersection of the polar cones, v∈W ′
1∩W ′

2. By definition
of polarity, w1 · v ≤ 0 for all w1∈W1 and w2 · v ≤ 0 for all w2∈W2. Hence v satisfying the
inequality: (w1 + w2) · v = w1 · v + w2 · v ≤ 0 for all w1 ∈ W1 and w2 ∈ W2. It follows that
W ′

1 ∩ W ′
2 is polar to the summation cone W1+ W2. �

The duality property is illustrated in Figure 4.12(b). The figure shows a tetrahedral cone
generated by the sum of two sectors, and its polar cone generated by the intersection of the
wedges polar to the individual sectors. Let us now put the cones mentioned in the lemma in
the context of our problem. Since B is assumed to be a planar object, its configuration space
is parametrized by q ∈ IR3. Let q0 be B’s configuration, and recall that Tq0

IR3 ∼= IR3 is the

4The term moment means torque about a specific axis. In 2D it is the torque about an axis perpendicular
to the plane.

5A set S in IRm is convex if for any x1, x2∈S the line segment connecting x1 and x2 lies in S. The convex

hull of two sets is the smallest convex set containing the two sets.
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Figure 4.12: (a) A wrench cone W i and its polar cone W ′
i. (b) The net wrench cone W1+W2

and its polar cone W ′
1 ∩W ′

2.

c-space tangent space at q0. In the following discussion W will represent a cone of wrenches
embedded in Tq0

IR3, while its polar cone, W ′, will represent a cone of tangent vectors in
Tq0

IR3. To emphasize that W is a cone of wrenches while W ′ is a cone of tangent vectors,
we will say that W and W ′ are dual cones. Note that the Euclidean inner product in (4.7)
represents the action, or instantaneous work, of a wrench on a tangent vector. The dual
cone W ′ can thus be interpreted as the set of B’s instantaneous motions impeded by all the
wrenches of W.

Let W i be the ith finger wrench cone, and let W ′
i be its polar cone for i = 1 . . . k. Based

on the duality property, the sum W1 + · · ·+Wk is polar to the intersection W ′
1 ∩ · · · ∩W ′

k.
Therefore, our plan is to first obtain a graphical depiction of the polar cones W ′

1, . . . ,W ′
k,

take their intersection, then use duality to depict the sum W1 + · · · + Wk. The wrench
cone W i is a two-dimensional sector given by W i = {(fi, xi × fi) : fi∈Ci}, where Ci is the
physical friction cone at xi (Figure 4.12(a)). For planar objects, the friction cone Ci can be
written as a positive linear combination of its two edges,

Ci =
{

s1f
L + s2f

R : s1, s2 ≥ 0
}

,

where fL and fR are unit forces aligned with the two edges of Ci. It follows that W i can be
written as a positive linear combination of the wrenches generated by fL and fR,

W i =

{

s1

(

fL
i

xi × fL
i

)

+ s2

(

fR
i

xi × fR
i

)

: s1, s2 ≥ 0

}

.

Equivalently, W i is the sum W i = WL
i + WR

i , where WL
i and WR

i are the one-dimensional
wrench cones generated by (fL

i , xi×fL
i ) and (fR

i , xi×fR
i ). Using (WL

i )′ and (WR
i )′ to denote

the polar cones of WL
i and WR

i , we will obtain W ′
i as the intersection W ′

i = (WL
i )′ ∩ (WR

i )′.

So consider for a moment the one-dimensional wrench cone generated by a unit force f
acting on B at a point x, given by Wf = {s(f, x × f) : s ≥ 0}. The polar cone of Wf ,

given by W ′
f =

{

q̇ ∈ Tq0
IR3 :

„

f

x × f

«

· q̇ ≤ 0
}

, is a halfspace passing through q0, bounded
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by the plane orthogonal to (f, x × f) and pointing away from this wrench. We encountered
a similar halfspace in Section ??, in the context of the c-space obstacles. We argued there
that the halfspace of Tq0

IR3 pointing away from the c-obstacle (i.e. the halfspace containing
the c-obstacle outward normal) consists of instantaneous clockwise rotations of B about
points on the right side of the contact normal line, counterclockwise rotations on the left
side of the contact normal line, and bi-directional rotations on the contact normal line
itself. The tangent vectors in the opposite halfspace correspond to opposite instantaneous
rotations of B. The same characterization holds for the halfspace pointing away from any
fixed wrench (f, x × f) based at q0 (see exercise 4.x). As depicted in Figure 4.13(a), this
halfspace consists of instantaneous clockwise rotations of B on the left side of the force line,
counterclockwise rotations on the right side of the force line, and bi-directional rotations
on the force line itself. These instantaneous rotation halfplanes graphically represent the
halfspace polar to a one-dimensional wrench cone.

Exercise: Let Wf be the one-dimensional cone generated by a wrench (f, x×f). Prove that
the instantaneous rotations representing the halfspace polar to Wf are clockwise rotations
on the left side of the force line, counterclockwise rotations on the right side of the force line,
and bi-directional rotations on the force line itself (Figure 4.13(a)).

Solution: Let y be B’s instantaneous center of rotation associated with a tangent vector q̇.
Based on the proof of 4.5.2, the tangent vectors q̇ = (v, ω) ∈ Tq0

IR3 can be parametrized in
terms of y and ω by the formula q̇ = ω(y × e, e), where (y, ω) ∈ IR2 × IR. Substituting for q̇
in the polarity condition (4.7) gives

(

f
x × f

)

· q̇ = ω(f, x × f)

(

y × e

e

)

= ω((x − y) × f)) · e ≤ 0.

Since e is a unit vector perpendicular to the plane, the polarity condition is equivalent to
the planar inequality ω(x − y) × f ≤ 0. There are now two cases to consider. When ω ≤ 0
the object B executes a clockwise rotation about y. In this case (x − y) × f ≥ 0, which



means that y must lie on the left side of the force line. When ω ≥ 0 the object B executes
a counterclockwise rotation about y. In this case the inequality becomes (x − y) × f ≤ 0,
implying that y must lie on the right side of the force line.

In our case W ′
i = (WL

i )′ ∩ (WR
i )′. When the intersection is performed on B’s instantaneous

rotations associated with (WL
i )′ and (WR

i )′, we obtain two labeled polygons. A polygon of
counterclockwise rotations, denoted M−

i , and a polygon of clockwise rotations, denoted M+

i

(note that M−
i corresponds to positive rotations while M+

i corresponds to negative rotations).
The pair (M−

i , M+

i ) represents the polar cone W ′
i. As depicted in Figure 4.13(b), this pair

complements the friction cone Ci and its negative reflection with respect to xi. Consider
now the intersection of the k negative polygons, M− =∩k

i=1M
−
i , and the intersection of the

k positive polygons, M+ =∩k
i=1M

+

i . If M− or M+ becomes empty during the intersection
process, it is marked as an empty set. The pair (M−, M+) graphically represents the polar
cone W ′

1 ∩ · · · ∩ W ′
k. Note that M− and M+ are constructed as intersection of convex

sets. Since the intersection of convex sets is convex, M− and M+ are convex and therefore
connected sets.

Our final step is to depict the cone W1 + · · · + Wk by identifying the meaning of polarity
with respect to the instantaneous rotations associated with the pair (M−, M+). Accord-
ing to Poinsot’s theorem (Theorem ??), the wrenches acting on a planar object B can be
parametrized as force lines, (f, τ) = (f, x × f), where f is a force acting on B along a line
passing through x. The following lemma describes the collection of force lines polar to the
instantaneous rotations of the pair (M−, M+).

Lemma 4.5.2 (Moment Labeling). Let M− and M+ be the counterclockwise and clockwise
instantaneous rotation polygons, representing the polar cone W ′

1 ∩ · · · ∩W ′
k. The net wrench

cone, W = W1 + · · ·+ Wk, consists of all force lines (f, x × f) satisfying the condition:

W=

{(

f
x × f

)

: (x−y) × f ≤ 0 for all y∈M− AND (x−y) × f ≥ 0 for all y∈M+

}

.

The force lines of W thus generate negative semi-definite torque about all points of M−,
and positive semi-definite torque about all points of M+.

Proof: Let us embed the planar environment as the (x, y) plane in IR3, and let e=(0, 0, 1)
be a unit vector perpendicular to the (x, y) plane. Under this embedding B’s angular velocity
is given by ωe for ω∈IR. According to Chasles’ Theorem (Theorem ??), the tangent vectors
q̇=(v, ω)∈Tq0

IR3 can be represented as instantaneous rotations of magnitude ω about points
y in the plane. The parametrization of q̇ = (v, ω) in terms of y and ω is as follows. Let
b be a fixed point on B, described in B’s frame. The world position of b at q0 = (0, θ0)
is given by y = R(θ0)b. When B moves with c-space velocity q̇, the velocity of y is given
by ẏ = ωe × y + v. The center of rotation associated with q̇ is the point y whose velocity
vanishes, ẏ = ωe × y + v = ~0. Hence v = −ωe × y, and the desired parametrization is
q̇ = ω(y × e, e) for (y, ω) ∈ IR2 × IR. Substituting for q̇ in the polarity condition (4.7) gives

(

f
x × f

)

· q̇ = ω(f, x × f)

(

y × e

e

)

= ω((x − y) × f)) · e ≤ 0.
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Figure 4.14: The instantaneous rotation polygons M− and M+ and the force lines spanning
the net wrench cone W = W1+W2.

There are now two cases to consider. When y ∈ M−, B executes a counterclockwise rotation
about y. In this case ω ≥ 0, and the polarity condition becomes ((x− y)× f) · e ≤ 0. When
y ∈ M+, B executes a clockwise rotation about y. In this case ω ≤ 0, and the polarity
condition becomes ((x − y) × f) · e ≥ 0. These two requirements give the force lines of the
net wrench cone. �

Example: Figure 4.14 shows a frictional two-finger grasp of a rectangular object. Assuming
frictional point contacts, the figure depicts the M− and M+ polygons for this grasp. The net
wrench cone generated by the two contacts, W1+W2, corresponds to all force lines passing
between M− and M+ such that the lines generate negative semi-definite moments about all
points of M−, and positive semi-definite moments about all points of M+. Since W1+W2

is the sum of two planar sectors based at the wrench space origin, it is a tetrahedral cone
analogous to the one depicted in Figure 4.12(b). The planar facets of W1+W2 correspond
to force lines passing through the vertices of M− and M+ (see exercise 4.x). In this example
M− and M+ have a total of three vertices, and W1+W2 is therefore bounded by three planar
facets in wrench space.

Exercise: Consider a planar two-finger grasp, such as the one depicted in Figure 4.14.
Assuming frictional point contacts, the net wrench cone, W1+W2, forms a cone based at the
wrench space origin and bounded by planar facets. Prove that the planar facets of this cone
correspond to force lines passing through the vertices of the instantaneous rotation polygons
M− and M+.

Solution: The planar facets of W1+W2 correspond to flat pencils of force lines (see Chap-
ter ??). Consider now a flat pencil based at x0. When x0 is located at a vertex of M− or M+,
some perturbations of x0 move it into the interior of either M− or M+, while other pertur-
bations move it into the exterior of both polygons. It follows that such a pencil corresponds
to a boundary facet of W1+W2. Note that when x0 is located at an interior point of an edge
of M− or M+, only a single force line of the pencil is feasible. This force line corresponds to
a wrench aligned with an edge of the net wrench cone.



Exercise: Consider the two-finger grasp depicted in Figure 4.14. The net wrench cone,
W1+W2, is a tetrahedral cone bounded by three planar facets. Determine which positions
of O2 along the edge of B transform the net wrench cone into a four-sided tetrahedral cone.

Solution: When the contact point of O2 with B slides leftward outside the friction cone
C1, the polygons M− and M+ possess four vertices. Since the vertices of M− and M+

correspond to the planar facets of W1+W2 in wrench space, in this case W1+W2 is bounded
by four planar facets.

Identifying Equilibrium Grasps. Let us now see how the moment labeling technique
can identify equilibrium grasps. If a contact arrangement is a feasible equilibrium grasp,
its net wrench cone contains at least an entire one-dimensional subspace passing through
the wrench space origin (exercise 3.x). Equivalently, the contact arrangement can generate
anti-parallel forces lying on a common line l. Now choose a positive direction for l. Since
the contacts can generate a force line along l’s positive direction, M− must lie on the left
side of l while M+ must lie on the right side of l. Since the contacts can also generate a
force line along l’s negative direction, M− and M+ must also lie on the opposite sides of l. It
follows that at an equilibrium grasp M− and M+ can be at most subsets of a common line
l. Since M− and M+ are convex and therefore connected sets, each of these sets is either
empty, a single point, or a single segment along the common line l. In particular, when
M− = M+ = ∅ all force lines are feasible. This is the important case of force closure, where
the net wrench cone fills the entire wrench space (see Chapter Z).

Exercise: Consider the three-finger grasp of a triangular object depicted in Figure 4.15(a).
The grasp involves three frictionless contacts, such that the contact normal pass through a
common point x0. Construct the M− and M+ polygons for this grasp. Determine if it is a
feasible equilibrium grasp. Describe the force-lines corresponding to the net wrench cone.

Solution: For frictionless contacts, the regions M−
i and M−

i are complementary halfplanes
separated by the ith contact normal line. The intersection of these regions gives M−=M+ =
{x0}. This is indeed an equilibrium grasp. Since x0 belongs to both polygons, the force lines
of the net wrench cone must generate zero moment about x0. Based on the moment formula,
τ = x0 × f , the feasible force lines can have any direction but must pass through x0. The
resulting collection of force lines is a flat pencil of lines based at x0. The net wrench cone is
therefore a two-dimensional subspace passing through the wrench space origin.

Exercise: Consider a slight shift of the finger O1 as shown in Figure 4.15(b). Repeat the
previous exercise for the perturbed grasp arrangement.

Solution: Now M− = ∅, while M+ is a polygon with a non-empty interior. This contact
arrangement is not a feasible equilibrium grasp, since no matter how we modulate the force
magnitudes, all forces generate a strictly positive moment about all points of M+.

Exercise: Consider the four-finger grasp involving an additional finger, O4, as depicted in
Figure 4.15(c). Repeat the previous exercise for the four-contact arrangement.

Solution: When O4 is added M+ becomes empty and in this grasp M− = M+ = ∅. This
four-contact arrangement is therefore a feasible equilibrium grasp. Since all force lines are
feasible, the net wrench cone covers the entire wrench space. This is an example of a force
closure grasp (see Chapter Z).
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Figure 4.15: (a) A frictionless 3-contact grasp with concurrent force lines. (b) A slightly
perturbed frictionless 3-contact grasp. (c) A frictionless 4-contact grasp.

Exercises

Exercise 4.1: A line contact occurs when a finger body touches the object B along a line
segment. The contact of a knife edge on flat surface is an example of such a contact. Assume
that the Coulomb friction model holds at each point of the line contact. Show that a line
segment contact can be replaced (or is equivalent to) a contact consisting of two distinct
contact points placed along the line segment.

Solution:

Exercise 4.2: Let k point masses move freely in a planar environment. We wish to in-
terconnect the points by rigid bars via rotational joints, such that the resulting structure
would become a single rigid body. Assume that every pair of adjacent bars is connected by
a single-degree-of-freedom rotational joint. Verify that 2k−3 rigid bars suffice to interconnect
k point masses into a single rigid structure.

Solution: When k = 2, a single bar connects two point masses into a rigid body. Hence
consider the case of k ≥ 3 point masses in IR2. Arrange the k points in a circle and
interconnect these points by a circle of k bars. In general, three rigid bars connected by
three rotational joints form a rigid triangle (this can be checked with Grübler’s formula).
Hence we can select one point mass on the circle, and connect it with every other point
mass which is not adjacent to it along the circle. The resulting triangulated structure forms
a single rigid body, and the structure has a total of k + (k − 3) = 2k − 3 bars.

Exercise 4.3: Under the conditions of the previous exercise, prove that 2k−3 is the minimum
number of rigid bars required to connect k points masses into a single rigid structure.

Solution: A structure made of rigid bars connected by rotational joints has two types of
degrees of freedom. Internal degrees of freedom associated with rotation of the structure’s
joints, and external degrees of freedom associated with translation and rotation of the struc-
ture as a whole. The total number of internal degrees of freedom can be computed using
Grübler’s formula as follows. Consider a planar structure consisting of n bars attached by
rotational joints. The initially disconnected bars have 3n degrees of freedom. Each attach-
ment of two bars with a rotational joint reduces the total number of degrees of freedom by
two. Since a planar structure has three external degrees of freedom, the total number of



internal degrees of freedom is 3(n − 1) − 2j, where j is the number of pairwise attachments
of bars in the structure.

Let us next derive a relation between the number of joints, j, and the number of point
masses, k. The structure forms a graph whose nodes are the k point masses. Let di be
the number of bars emanating from the ith node. The number of joints at the ith node is
di−1. Hence the total number of joints is given by j =

∑k

i=1
(di − 1) =

∑k

i=1
di − k. Each

bar is attached at its two endpoints to the structure’s nodes. Hence the sum of the node
degrees satisfies the relation

∑k

i=1
di = 2n. Substituting j = 2n−k in Grübler’s formula

gives: 3(n− 1)− 2j = 3(n− 1)− 2(2n− k) = 2k − n − 3. The structure forms a rigid body
when 2k − n− 3 ≤ 0. Any connection of k points masses into a rigid structure thus requires
n ≥ 2k − 3 bars.

Exercise 4.4: The two-finger grasp of the rectangular box depicted in Figure 4.7 is an
example of a force closure grasp. Theoretically, the fingers can generate any desired net
wrench on B. List practical limitations to this statement.

Solution: From the object’s perspective, its overall structural strength may limit the mag-
nitude of the allowed finger forces. From the fingers’ perspective, they are driven by mecha-
nisms whose actuators are upper bounded by practical considerations such as motor strength
and power supply limitations.

Exercise 4.5: Prove that each wrench cone W i = {(fi, xi × fi) : fi ∈Ci} forms a cone in
wrench space. Prove that the sum W1 + · · ·+ Wk is still a cone in wrench space.

Exercise 4.6: We described a procedure for connecting k spatial point masses into a rigid
structure of 3k−6 rigid bars connected by spherical joints. Verify that the structure forms
a single rigid body up to self-rotation of the bars.

Solution: Since the rigid bars are connected by spherical joints, the structure has two types
of internal degrees of freedom: self rotations of the bars about their axes, and rotations of
the structure’s joints while the bars are fixed with respect to their axes. The structure also
has six external degrees of freedom associated with translation and rotation of the structure
as a whole. A spatial n-bar structure forms a rigid body when it has n internal degrees of
freedom, as these degrees of freedom correspond to self-rotations of the n bars. The initially
disconnected bars have 6n degrees of freedom. Each attachment of two bars with a spherical
joint reduces the total number of degrees of freedom by three. Based on Grübler’s formula,
the structure’s total number of internal degrees of freedom is 6(n − 1) − 3j, where j is the
number of pairwise attachments of bars, or joints, in the structure. The procedure uses a total
of n = 3k − 6 bars to connect the k point masses. Each of the planar graphs is constructed
with k

2
+2(k

2
−3) = 3

2
k−6 joints. The k vertical bars are attached with 2k additional joints.

The total number of joints is thus j = 2(3

2
k−6)+2k = 5k−12. Substituting for j in Grübler’s

formula, then using the relation 3k = n + 6, gives: 6(n − 1) − 3j = 6(n − 1) − 3(5k − 12) =
6(n − 1) − 5(n + 6) + 36 = n. Since the structure consists of n bars that can freely rotate
about their axes, it forms a rigid body up to self-rotations of its bars.·

Exercise 4.7: We have shown that k spatial point masses can be connected with 3k−6 rigid
bars via spherical joints into a rigid structure. Prove that 3k−6 is the minimum number of
bars required for this task.



Solution: A spatial structure of rigid bars connected by spherical joints has three types of
degrees of freedom. The first type are self rotations of the bars about their axes. The second
type are internal degrees of freedom associated with rotation of the structure’s joints while
the bars are kept fixed with respect to their axes. The third type are external degrees of
freedom associated with translation and rotation of the structure as a whole.

The total number of internal degrees of freedom can be computed using Grübler’s formula as
follows. Consider a spatial structure consisting of n bars attached by spherical joints. The
initially disconnected bars have 6n degrees of freedom. Each attachment of two bars with
a spherical joint reduces the total number of degrees of freedom by three. Since a spatial
structure has six external degrees of freedom and n self-rotation degrees of freedom, the total
number of internal degrees of freedom is 6(n−1)−n−3j, where j is the number of pairwise
attachments of bars in the structure.

Let us next derive a relation between the number of joints, j, and the number of point
masses, k. The structure forms a graph whose nodes are the k point masses. Let di be the
number of bars emanating from the ith node. The number of joints at the ith node is di−1.
Hence the total number of joints is given by j =

∑k

i=1
(di − 1) =

∑k

i=1
di − k. Each bar is

attached at its endpoints to two nodes of the graph. Hence the sum of the node degrees
satisfies the relation

∑k

i=1
di = 2n. Substituting j = 2n−k in Grübler’s formula gives:

6(n − 1) − n − 3j = 6(n − 1) − n − 3(2n − k) = 3k − n − 6. The structure forms a rigid
body when 3k − n − 6 ≤ 0. Any connection of the k points masses into a rigid structure
thus requires n ≥ 3k − 6 bars.

Exercise: Let a 3D object B be grasped by two frictional point contacts at an equilibrium
grasp. Characterize the subspace of internal forces for this grasp.
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