
Chapter 6

Introduction to Secure Grasps

Having developed in detail the theory of equilibrium grasps, our next step is to develop
a theory of secure grasps. Secure grasps should be able to keep the object safely contained
within the grasping fingers in the face of all possible perturbations that might arise while the
object is transported and manipulated. For instance, a multi-finger robot hand is required
to safely transport objects in the presence of disturbances generated by movement of the
robot arm on which the grasping mechanism is mounted. Similarly, a fixturing system must
hold workpieces within a prescribed position tolerance in the face of disturbances caused
by manufacturing or assembly operations. During legged locomotion, the moving robot is
required to safely support itself in the presence of disturbances generated by movement of
its free limbs.

This chapter introduces two complementary types of secure grasps: immobilizing and wrench

resistant grasps1. In immobilizing grasps, which are introduced in Section 6.1, the fingers are
arranged so as to prevent any movement of the object with respect to the grasping fingers.
In the complementary wrench resistant grasps, introduced in Section 6.2, the fingers are
arranged so that they can potentially counterbalance all possible forces and torques that
might disturb the object within the grasp, thereby resisting the tendency of the disturbing
forces to wrench the object fromf within the grasp. In order to focus on the essential
ideas, most of this chapter, as well as Part II of the book, consider frictionless contacts.
While no contacts are truly frictionless, a secure frictionless grasp provides a conservative
approximation in cases where the magnitude of the contact friction is small, or the grasp
is lightly loaded. Moreover, frictionless grasps can be analyzed using the geometric c-space
techniques introduced in Part I of the book. Their study thus serves as a useful introduction
to the key grasp safety issues, which are extended to frictional grasps in Part III of the book.
Section 6.3 establishes that in the case of frictionless contacts, immobilizing and resistant
grasps are perfectly dual notions (this duality breaks down in the presence of friction).

1In the grasping and fixturing literature, the term form closure is also used for first-order immobilization.
Similarly, the term force closure has been traditionally used for our notion of wrench resistant grasps. See
Section 6.5 for additional discussion of this terminology
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6.1 Immobilizing Grasps
The mobility of a mechanism composed of moving mechanical parts is the number of inde-
pendent degrees-of-freedom (DOF) needed to uniquely describe the internal motions of the
mechanism’s components. When a mechanism is immobile, it forms a rigid structure where
no internal movement of its constituent parts is possible. In grasping mechanics, we seek to
analyze the mobility of a grasped object, B, relative to stationary finger bodies, O1, . . . ,Ok,
under the frictionless rigid body model. This type of mobility is most naturally analyzed
in the object’s configuration space (c-space), which uses studied in earlier chapters. The
c-space view of mobility starts with the following definition of the set of free configurations.

Definition 1 (Free C-Space). Let a rigid object B be contacted by rigid and stationary

fingers O1, . . . ,Ok. Let CO1, . . . , COk be the finger c-obstacles in B’s c-space. The free
c-space, F , is the set of configurations

F = C −

k
⋃

i=1

int(COi) m = 3 or 6,

where int(COi) denotes the interior of COi.

The interior of the free c-space is an open subset of C which consists of B’s contact-u100free
configurations. The boundary of the free c-space is the union of the finger c-obstacle bound-
aries, bdy(F)=∪k

i=1bdy(COi). Any c-space path which lies on bdy(COi) represents a perfectly
feasible motion of B which maintains surface contact with the stationary finger body Oi.
When B is contacted by k fingers at a configuration q0, the point q0 lies at the intersection
of the finger c-obstacle boundaries, q0 ∈∩k

i=1bdy(COi). The free motions available to B are
defined as follows.

Definition 2 (Free Motions). Let B be located at a configuration q0 in contact with sta-

tionary fingers O1, . . . ,Ok. Let D be a small m-dimensional ball in B’s c-space centered at

q0. The free c-space motions of B at q0 are those local c-space paths which start at q0 and

lie in D ∩ F .

The free motions are those local motions along which B either breaks away or maintains
surface contact with the stationary fingers (some examples are discussed below). When B
has available free motions at a given grasp, there exist perturbing forces that can induce
these motions and thus allow B to escape the grasp. Conversely, grasp safety is ensured
when the grasping fingers allow no free motions of B. This is the notion of immobilizing
grasps introduced in the following definition.

Definition 3 (Immobilization). A rigid object B held at a configuration q0 by rigid and

stationary fingers O1, . . . ,Ok is immobilized when it has no free c-space motions at q0.

Equivalently, an object is immobilized when the finger c-obstacles completely surround the
object’s configuration q0. The finger c-obstacles can isolate the point q0 only when the
physical fingers form a frictionless equilibrium grasp. This important property is stated in
the following theorem (see appendix for a proof).
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Figure 6.1: (a) The halfspace M1 approximating the exterior of CO1 at q0. (b) The 1’st-order
approximation to the free motions, M1 ∩ M2, at a two-finger equilibrium grasp.

Theorem 1 (Equilibrium Grasp Immobilization). A necessary condition for a rigid

object B to be immobilized by rigid fingers O1, . . . ,Ok is that the fingers hold the object in

a feasible frictionless equilibrium grasp.

To intuitively understand the theorem, consider the finger c-obstacles associated with a pla-
nar grasp. The outward normal to the ith finger c-obstacle at q0, ηi(q0), determines a tangent
plane to COi at q0. Let Mi denote the halfspace of tangent vectors based at q0, which is
bounded by the plane tangent to COi at q0 and pointing away from COi:

Mi = {q̇ ∈ Tq0
C : ηi(q0) · q̇ ≥ 0} (6.1)

The halfspace Mi represents the first-order approximation to the free motions allowed by the
ith finger (Figure 6.1(a)). Let M1,...,k denote the intersection of the free halfspaces associated
with the k fingers:

M1,...,k = ∩k
i=1Mi = {q̇ ∈ Tq0

C : ηi(q0) · q̇ ≥ 0 for i = 1 . . . k} (6.2)

The set M1...k forms a cone based at the origin of the object’s tangent space, Tq0
C. When

M1,...,k has a non-empty interior, any q̇ ∈Tq0
C pointing into this interior determines a local

motion which causes B to break contact with all k fingers. For Mi,...,k to have an empty
interior, the c-obstacle normals must be linearly dependent at q0. But η1(q0), . . . , ηk(q0)
are collinear with the wrenches generated by finger forces acting along B’s inward contact
normals. Hence CO1, . . . , COk can isolate the point q0 only when B is held in a frictionless
equilibrium grasp. The theorem is illustrated with the following examples.

Example—a non-immobilizing equilibrium grasp: Consider the frictionless two-finger
equilibrium grasp of an ellipse shown in Figure 6.1(b). The figure also shows the c-space
geometry of this grasp, with q0 being the object’s equilibrium grasp configuration. Consider
the first-order approximation to the finger c-obstacles at q0. Set the world and object frames
at the ellipse center, with the x-axis aligned with the ellipse’s major axis. The contact
locations are x1 = (−a, 0) and x2 = (a, 0), where 2a is the ellipse major axis length. The
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Figure 6.2: (a) A 3-finger equilibrium grasp of a triangular object. (b) The finger c-obstacles
completely surround the object’s configuration point q0.

ellipse’s inward unit normals at x1 and x2 are n1 = (1, 0) and n2 = (−1, 0). The finger
c-obstacles outward normals are given by

η1(q0) =

(

n1

x1 × n1

)

=





1
0
0



 and η2(q0) =

(

n2

x2 × n2

)

=





−1
0
0



,

where u× v = uT Jv for u, v∈IR2. The halfspace of tangent vectors based at q0 and pointing
away from COi, Mi = {q̇ ∈ Tq0

C : ηi(q0) · q̇ ≥ 0}, is the first-order approximation to the
free motions allowed by the ith finger. When the fingers do not form an equilibrium grasp,
M1 ∩M2 has a non-empty interior. When the fingers form an equilibrium grasp, the tangent
vectors that lie in both halfspaces are given by

M1 ∩ M2 =

{

q̇ ∈ Tq0
IRm :





0
1
0



 ·

(

v

ω

)

≥ 0 and





0
−1
0



 ·

(

v

ω

)

}

,

where q̇=(v, ω) represents the linear and angular velocity of B. Since the c-obstacle normals
are antiparallel at the equilibrium grasp, M1∩M2 consists only of the tangent plane common
to CO1 and CO2 at q0, which has an empty interior.·

Frictionless equilibrium grasps are necessary but not sufficient for achieving object immobi-
lization. For instance, the two-finger equilibrium grasp of Figure 6.1(b) is non-immobilizing,
since the ellipse is free to escape along any combination of vertical translation and rota-
tion about its center. This observation is supported by the first-order analysis, since any
q̇ ∈ M1∩M2 consists of instantaneous vertical translation combined with instantaneous rota-
tion about the contacts’ midpoint. The next example describes an immobilizing equilibrium
grasp.

Example—an immobilizing equilibrium grasp: Figure 6.2(a) shows a triangular object
held in a frictionless equilibrium grasp by three disc fingers. The same first-order analysis
implies that the triangular object is free to instantaneously rotate about the point of in-
tersection of the finger contact normals. But clearly, the object is fully immobilized by the
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three fingers. As seen in the c-space geometry of Figure 6.2(b), the point q0 is completely
surrounded by the finger c-obstacles. How can this object be immobilized when the first-
order analysis suggests that some instantaneous free motions are possible? The paradox can
be resolved by realizing that the local free motions have first order (velocities, or tangent
vectors) and second order (accelerations, or path curvature) properties. A proper analysis of
mobility must include both properties of the local free motions. When curvature effects are
taken into account, the triangular object is fully immobilized by the three fingers.·

Immobilization focuses on the rigid-body constraints imposed on the object free motions by
the finger bodies. It is thus suited for judging grasp safety in frictionless situations, or in
situations where friction effects cannot be relied upon (e.g. during high precision machining
of fixtured parts). When friction effects are included, a grasp which does not satisfy the
immobility condition can still form a secure grasp. This complementary notion of grasp
security is next discussed.

6.2 Wrench Resistant Grasps
Rather than focus on the grasped object’s free motions, one can alternatively analyze the
fingers ability to resist perturbing forces and torques that might push or pull the object
away from the grasping fingers. When every possible disturbance wrench applied to B can
be counterbalanced by permissible finger forces, the grasped object can be safely kept within
the grasping mechanism. The following definition of wrench resistant grasps is quite general
and applies to both frictional and frictionless grasps.

Definition 4 (Wrench Resistant Grasp). Let a rigid object B be held at a configuration

q0 by rigid fingers O1, . . . ,Ok. The grasp is wrench resistant when any possible external

wrench, wext∈T ∗

q0
C, applied to B can be balanced by a set of feasible finger forces:

G~f + wext =~0 ~f =(f1, . . . , fk)∈C1 × · · · × Ck, (6.3)

where T ∗

q0
C is the object’s wrench space (m=3 or 6), G is the grasp map of the k-finger grasp,

and C1, . . . , Ck are the friction cones at the contacts, which define the set of feasible finger

contact forces.

For the most common case of hard point contact model, the wrench resistance criterion is:

∀wext∈T ∗

q0
C ∃~f ∈C1 × · · · × Ck w1 + · · · + wk + wext =~0, (6.4)

where wi =(fi, xi × fi) for i=1 . . . k are the finger wrenches.

A grasp arrangement is wrench resistant when the grasp map, G :C1×· · ·×Ck → T ∗

q0
C, maps

the set of allowed finger forces onto the object’s wrench space. In contrast with immobilizing
grasps, wrench resistant grasps provide only a necessary condition for achieving secure grasps.
Depending on the application, one must ensure that the grasping system actually generates
the required reaction forces (this topic is further discussed below). Like immobilizing grasps,
resistant grasps can only be achieved with equilibrium grasps—a frictionless equilibrium in
the case of frictionless contacts, and a frictional equilibrium in the case of frictional contacts.
This property is based on the following useful fact (see appendix for a proof).
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Figure 6.3: A frictional two-finger equilibrium which is (a) a non-resistant grasp, and (b) a
wrench resistant grasp.

Proposition 6.2.1. Let a rigid object B be held by rigid fingers O1, . . . ,Ok. The fingers

form a feasible equilibrium grasp iff their net wrench cone, W = W1 + · · ·+Wk,
2 contains

a full subspace passing through the object’s wrench space origin.

Since the wrench cones associated with wrench resistant grasps span the entire wrench space,
they must form equilibrium grasps as stated in the following corollary.

Corollary 6.2.2 (Wrench Resistant Equilibrium Grasp). A necessary condition for

a wrench resistant grasp is that the fingers hold the object in a feasible equilibrium
grasp—a frictionless equilibrium in the case of frictionless contacts, a frictional equilibrium

in the case of frictional contacts.

The following example illustrates the necessity of establishing an equilibrium grasp in order
to achieve grasp resistance.

Example—necessity of equilibrium grasp: First consider the two-finger grasp of an
ellipse shown in Figure 6.3(a). The indicated friction cones do not support opposing forces
at the contacts, hence this is not a feasible equilibrium grasp. When an external force, fext,
attempts to pull the ellipse away from the two fingers, there are no feasible finger forces,
f1 ∈ C1 and f2 ∈ C2, that can possibly counterbalance this force. Next consider the two-
finger grasp of the ellipse shown in Figure 6.3(b). The friction cones now support a two-finger
equilibrium grasp. As discussed later in the book, in the case of frictional contacts a grasp
is wrench resistant if and only if the contacts support an equilibrium whose forces lie in
the interior of the respective friction cones. Since the opposing forces lie in the interior of
their friction cones, this is a wrench resistant grasp. As indicated in Figure, 6.3 fext can be
resisted by finger forces f1 and f2 which lie in their respective friction cones.·

Practical Implications of the Resistant Grasp Definition:

The definition of wrench resistant grasps makes rather strong assumptions about the design
and operation of the grasping system. The grasping system must be able to quickly sense
the perturbing wrench, rapidly compute a new set of finger forces that will cancel the per-
turbation, then react with the fingers so as to generate the required forces. Furthermore, the
grasping system sensing and reaction cycle must keep pace with the natural time variations

2Each Wi is the ith finger wrench cone, given by Wi ={(fi, xi × fi) : fi∈Ci} for i = 1 . . . k.
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of the external perturbations. In light of this observation, the grasps of Definition 4 might
aptly be called actively wrench resistant grasps.

In some grasping mechanisms, and in most fixtures, some or all of the contact forces are
not actively generated and controlled by articulated fingers. Instead, the contact forces are
generated by passive mechanical means. Such effects generally arise from two processes:

• A preloading process, where the object B is initially pressed against stationary “finger”
bodies by an external agent (e.g. a factory worker squeezes a part against fixturing
elements), ending at an equilibrium grasp. The preloading process establishes nonzero
contact forces which lie within the allowed friction cones. When the fingers are station-
ary rigid bodies (e.g. fixturing elements), any subsequent external wrench perturbation
acting on B (e.g. a factory worker attempting a machining operation) induces a per-
turbation of the contact forces. As long as the perturbed contact forces remain within
their respective friction cones, the equilibrium grasp can be maintained.

• A compliant reaction process, where the finger forces vary in response to movements
of the object B. When B moves in response to perturbing wrenches, its contacts with
the finger bodies are deformed. Reaction forces arise from a stiffness relationship that
describes how the contact deformations generate reaction forces. Compliant finger
mechanisms, or feedback algorithms that induce a compliant relationship at the joints
of the finger mechanisms, can also contribute to system compliance.

A remark on compliant grasps: While this book considers the theory of grasping under
the ideal rigid body model, let us sketch how compliance is included in grasp mechanics (see
bibliographical notes). For small displacements of B, the reaction force at the ith contact
can be modeled as:

fi = −Ki(q − q0) + f 0

i (6.5)

where f 0
i denotes the preload force at the ith contact, and Ki is the stiffness matrix asso-

ciated with the ith contact. Equation 6.5 can be seen as a model for a linear spring with
spring constant Ki, and initial spring compression f 0

i . When B is held in a compliant equi-
librium grasp at a configuration q0, external wrench perturbations can only be balanced at
equilibrium points which lie in the vicinity of q0. Therefore, we are lead to the following
more lenient notion of grasp resistance.

Definition 5 (Locally Wrench Resistant Grasps). Let an object B be held by fingers

O1, . . . ,Ok at an equilibrium grasp configuration q0. Let D be a small m-dimensional ball in

B’s c-space centered at q0. The grasp is locally wrench resistant if the contact reaction

forces can counterbalance any external wrench in a bounded m-dimensional neighborhood

centered at the object’s wrench space origin at an equilibrium configuration which lies in D.

Locally wrench resistant grasps are required to resist only a bounded set of external wrenches,
and may do so at an equilibrium which lies within a small neighborhood of q0. This type
of local grasp resistance is the best one can hope for in grasping systems whose contacts
react according to pre-specified mechanical contact laws. When such contact laws are imple-
mented as fingertip feedback control laws, local grasp resistance is equivalent to the notion
of disturbance rejection from control theory.
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6.3 Duality of Immobilizing and Resistant Grasps un-

der Frictionless Contact Conditions

As this part of the book will focus on secure grasps in the case of frictionless contacts, let us
establish duality between wrench resistant and immobilizing grasps under frictionless contact
conditions. The grasp resistance condition associated with frictionless contacts has a simple
c-space interpretation. A frictionless finger force can be parametrized as fi = λini, where
λi ≥ 0 is the force magnitude and ni is B’s inward unit normal at xi. The wrench induced
by this force, wi =λi(ni, xi×ni), is collinear with the finger c-obstacle outward normal at q0,
ηi(q0) = (ni, xi×ni). Substituting wi = λiηi(q0) in (6.4) gives the grasp resistance condition:

{λ1η1(q0) + · · ·+ λkηk(q0) : λ1, . . . , λk ≥ 0} = T ∗

q0
C m = 3 or 6.

The grasp resistance condition is thus equivalent to the requirement that the finger c-obstacle
normals positively span the object’s wrench space.

Next consider the complementary approach, which seeks to prevent the object’s free motions
by proper placement of the finger bodies. The simplest type of immobility is based on
preventing all possible instantaneous motions of the grasped object.

Definition 6 (First-Order Immobilization). Let a rigid object B be held at an equilibrium

grasp configuration q0 by rigid and stationary fingers O1, . . ., Ok. The object is first-order
immobilized when it has no free instantaneous motions at q0,

M1...k = {q̇ ∈ Tq0
IRm : ηi(q0) · q̇ ≥ 0 for i = 1 . . . k} = {0},

where Tq0
C is B’s tangent space at q0.

The following theorem asserts that frictionless resistant grasps are equivalent to first-order
immobilizing grasps (see appendix for a proof).

Theorem 2 (Duality of first-order secure grasps). In the case of frictionless contacts,

wrench resistant and first-order immobilizing grasps are dual notions—a frictionless equi-

librium grasp is resistant iff it is first-order immobilizing.

The theorem is based on the following notion of dual cones (see Figure 6.3). Let W be
a wrench cone based at the origin of the object’s wrench space, T ∗

q0
. The dual cone, W ∗, is

the cone of tangent vectors given by

W ∗ = {q̇∈Tq0
C : w · q̇ ≤ 0 for all w ∈ W}. (6.6)

In our case W is the set of external wrenches that can be resisted by the finger wrenches,
denoted Wext. The net wrench cone generated by the k fingers is given by W = {λ1η1(q0) +
· · · + λkηk(q0) : λ1, . . . , λk ≥ 0}, and Wext is given by Wext = {−w : w ∈ W}. It is shown
in the appendix that the cone of free instantaneous motions, M1...k, is dual to Wext. This
duality implies that Wext = T ∗

q0
C iff M1...k = {0}, as illustrated in the following example.
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Figure 6.4: (a) A 2-finger grasp, and (b) the relation M1,2 =(Wext)
∗ for this grasp. (c) A 4-

finger frictionless equilibrium grasp which is (d) resistant and first-order immobilizing.

Example—duality of M1...k and Wext: Consider the two-finger grasp of an ellipse shown
in Figure 6.3(a). The ellipse is located at a configuration q0, and the finger forces f1 and
f2 act along B’s inward contact normals. When the frames FW and FB are selected at
the contact normals intersection point, the finger wrenches are given by w1 = (f1, 0) and
w2 = (f2, 0). These wrenches are collinear with the finger c-obstacle outward normals at
q0, ηi(q0) = wi for i = 1, 2. The wrench cone that can be resisted by the fingers, Wext =
{λ1(−η1(q0)) + λ2(−η2(q0)) : λ1, λ2 ≥ 0}, is the horizontal sector depicted in Figure 6.4(b).
Its dual cone, M1,2 = (Wext)

∗, forms a three-dimensional wedge whose spine is aligned with
the ω-axis in the object’s tangent space, as depicted in Figure 6.4(b). Next consider the
four-finger grasp of the ellipse shown in Figure 6.4(c). Now Wext spans the entire wrench
space as shown in Figure 6.4(d). Based on the duality property, M1,2 = (Wext)

∗ = {0}, so
this grasp is also a first-order immobilizing grasp.·

Based on Theorem 2, one can verify the safety of a candidate frictionless equilibrium grasp
in two equivalent ways. Either one verifies the fingers ability to resists all external wrenches
that might act on B, or equivalently check that all the object’s instantaneous motions are
prevented by the fingers bodies.

6.4 Forward Look at Part II Chapters

This chapter provided an intuitive overview of the two fundamental approaches to grasp
security. The remaining chapters of this part of the book will develop the analytical tools
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needed to analyze the mobility of an object held at a given grasp arrangement, then show how
these tools can be used to address other important issues in grasp mechanics associated with
frictionless contacts. Chapter 7 will develop the theory of first-order immobilizing grasps,
which analyzes the first-order properties, or velocities, of the free motions of an object held
by multiple fingers. Chapter 8 will extend the framework of Chapter 7 to consider the
second-order properties of the free motions, and define second-order immobilizing grasps.
Based on the methods introduced in Chapters 7 and 8, Chapter 9 will take up the following
basic problem: What is the minimum number of fingers required to immobilize arbitrary rigid

objects? A detailed analysis of this problem will be given for planar objects, where it will
be seen that the minimal number of fingers depends on the finger geometry. A summary of
the corresponding bounds for spatial objects will also be given. Chapter 10 will extend the
immobilization analysis to include gravitational effects. In this case grasp safety amounts
to ensuring that the fingers support the object at a locally stable equilibrium under the
influence of gravity. The locally stable equilibria are precisely immobilizing grasps under
the interpretation of gravity as a virtual “finger” acting at the object’s center of mass.
Therefore, the safety of a candidate grasp or posture under the influence of gravity can
be judged with the immobilization tools developed in Chapters 7 and 8. The geometric
techniques introduced in this part of the book will form the foundation for the subsequent
analysis of frictional grasps in Part III of the book.

6.5 Bibliographical Notes

The notion of immobilizing grasps is traditionally called form closure in the grasping litera-
ture, though the traditional notion of form closure only covers what we term in this book as
1st-order immobilization.. This notion dates to the work of Reuleaux in the 19th century [3].
The notion of resistant grasps is traditionally called force closure in the grasping literature.
While this notion is also deemed to originate with Reuleaux, the first formal discussion of
force closure concepts can be found in the early 20th century work of Somoff [5]. The study
of form closure grasps in the modern robotics era starts with the work Lakshminarayana [2],
while the modern analysis of robotic force closure grasps largely began with the work of Prof.
Roth and the Ph.D. studies of Salisbury [4] and Kerr [1].

Appendix A: Proof Details
This appendix contains proofs of three key properties concerning immobilizing and resistant
grasps. We begin with the property that every immobilizing grasp must form a frictionless
equilibrium grasp.

Theorem 1. Let a rigid object B be contacted by rigid and stationary fingers O1, . . . ,Ok.

A necessary condition for B to be immobilized is that the fingers hold the object in a feasible

frictionless equilibrium grasp.

Proof: While the proposition holds true for general fingers, let us assume that the
object is held by point fingers, p1 . . . pk. Recall that the object’s c-space is parametrized by
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q ∈ IRn+2, and that q0 lies on the intersection of the c-obstacle boundaries associated with
the k fingers. Now let ηi∈IRn+2 be the unit outward normal to the ith c-obstacle at q0. The
wrench induced by a normal force fi at pi is a positive multiple of ηi, wi = λiηi for λi ≥ 0.
At a k-finger equilibrium grasp the net wrench on the object must be zero:

λ1η1 + · · ·+ λkηk = ~0 λ1 . . . λk ≥ 0. (6.7)

Let us now show that when the object is not held at an equilibrium grasp, it can simulta-
neously break contact with the k fingers and therefore is not immobilized. Let W be the
collection of net wrenches affecting the object:

W =
{

w ∈ T ∗

q0
IRm : w = λ1η1 + · · · + λkηk for λ1 . . . λk ≥ 0

}

.

Since W is a positive linear combination of η1 . . . ηk, it forms a convex cone based at q0. If
the contact arrangement is not an equilibrium grasp, the cone W does not contain any full
one-dimensional line passing through q0 (such a line can only be generated by two opposing
rays and is associated with an equilibrium grasp involving at least two fingers). A cone
having this property is called pointed in convex analysis. The cone dual to W is given by
W∗ = {h ∈ IRm : h · w ≤ 0 for all w ∈ W}. The dual cone must have a non-empty
interior, otherwise (W∗)∗ = W contains a full one-dimensional line. Every vector h from the
interior of W∗ satisfies h · w < 0 for all w ∈ W. Let q̇ = −h be a tangent vector based at
q0, representing a particular instantaneous motion of the object which starts at q0. Since
ηi ∈ W for i = 1 . . . k, q̇ satisfies the inequality

ηi · q̇ > 0 for i = 1 . . . k.

It follows that the c-space trajectory q(t) such that q(0) = q0 and q̇(0) = q̇ moves away
from the k finger c-obstacles. Physically the object breaks contact with all k fingers along
this motion, implying that the object is not immobilized by the k fingers. A frictionless
equilibrium grasp is thus necessary for achieving form closure. �

The next proposition provides the basis for the property that every resistant grasp must form
an equilibrium grasp (a frictionless equilibrium grasp in the case of frictionless contacts, a
frictional equilibrium grasp in the case of frictional contacts).

Proposition 6.2.1. Let a rigid object B be held by rigid fingers O1, . . . ,Ok. The fingers

form a feasible equilibrium grasp iff the net wrench cone, W = W1 + · · · + Wk, contains

a full subspace passing through the object’s wrench space origin.

Proof: The set product of the friction cones, C1×· · ·×Ck, forms a cone in the finger forces
space (f1, . . . , fk). Since each friction cone Ci is a pointed cone,3 C1 × · · · × Ck is a pointed
cone based at the origin of the space (f1, . . . , fk). Now pick a non-zero wrench in the subspace
contained in W1 + · · ·+Wk, w0 ∈ T ∗

q0
IRm. The grasp map, G :C1×· · ·×Ck → T ∗

q0
IRm, maps

the cone C1×· · ·×Ck onto the net wrench cone. Hence there exists a non-zero vector of finger

3A cone C based at point x is a pointed cone when it does not contain any full line passing through its
base point x.
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forces, ~f0 ∈ C1×· · ·×Ck, such that G~f0 = w0. Since vw0 also lies in the subspace contained
in W1 + · · ·+Wk, there exists another non-zero finger force combination, ~f ′

0 ∈ C1×· · ·×Ck,

such that G~f ′

0 = −w0. Since G is a linear map, G(~f0 + ~f ′

0) = w0 −w0 = ~0. The finger forces
~f0 + ~f ′

0 thus generate a zero net wrench on B.

We now prove that ~f0 + ~f ′

0 consists of non-zero forces which lie in the respective friction

cones. Since ~f0 and ~f ′

0 lie in the cone C1 × · · · ×Ck, their sum, ~f0+ ~f ′

0, also lies in this cone.

Therefore ~f0+~f ′

0 consists of allowed finger forces. Since C1×· · ·×Ck is a pointed cone, ~f0+~f ′

0

must be a non-zero vector of finger forces; otherwise C1 × · · · × Ck contains two opposing
rays collinear with ~f0 and −~f0, and therefore is not a pointed cone. It follows that ~f0+ ~f ′

0

consists of permissible non-zero forces. �

The last property is the duality between resistant and first-order immobilizing grasps.

Theorem 2. In the case of frictionless contacts, resistant and first-order immobilizing grasps

are dual notions—a frictionless equilibrium grasp is resistant iff it is first-order immobilizing.

Proof: The net wrench cone generated by the k fingers is given by W = {λ1η1(q0) +
· · ·+ λkηk(q0) : λ1, . . . , λk ≥ 0}. The set of external wrenches that can be resisted by these
fingers wrenches, Wext, is given by

Wext = {−w : w ∈ W} = {λ1(−η1(q0)) + · · ·+ λk(−ηk(q0)) : λ1, . . . , λk ≥ 0} .

The set of B’s instantaneous free motions at q0 is obtained by intersecting the first-order free
halfspaces (see Section 6.1),

M1...k = ∩k
i=1Mi = {q̇ ∈ Tq0

IRm : ηi(q0) · q̇ ≥ 0 for i = 1 . . . k}.

Since wext = λ1(−η1(q0)) + · · · + λk(−ηk(q0)) for all wext ∈ Wext, we obtain the following
relation between M1...k and Wext,

∀wext∈Wext ∀q̇∈M1...k wext · q̇ =

k
∑

i=1

λi(−ηi(q0)) · q̇ ≤ 0.

Based on the definition of dual cone in eq. 6.6, (Wext)
∗ = {q̇ : w · q̇≤0 for all w∈Wext} =

M1...k. The cone of free instantaneous motions, M1...k, is thus dual to the cone of resistible
external wrenches, Wext. Therefore Wext = T ∗

q0
IRm iff M1...k = {0}. �
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