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Abstract 
Thi s  puper eztcn,ds the  caging theory of R i m o n  and 
Bluke [ill for. orre-parameter two-finger grippers t o  
orwparame tar  three-finger grippers. T h e  caging the- 
ory describes lroui the  f ingers of a robot gripper can  be 
placed uroumd u n  object so tha t  it cannot  escape. A s  
the fiingers close f r o m  such  a configuration, the  f reedom 
of the object t o  move  is gradually restricted, unti l ,  in 
the  absence of f r ic t ion ,  it is completely immobilized by 
the  f ingers u t  an immobilizing grasp. T h e  ex tens ion  
of the  cagirq theory t o  three-fingered grippers i s  im- 
por tunt  because conuex objects cannot  be caged by two- 
,finger grippers. T h e  computa t ion  of the  set  of caging 
fo rmat ions  requires the  identif ication of both the  two- 
cmd three-finger frictionless grasps. These  grasps cor- 
respond to  critical points of the  opening parameter  in 
the gripper's configuration space. There  are two  m a i n  
problems here. Firstly,  a method is needed t o  com- 
pu te  the  critical po in ts  of the  opening parameter  an the 
three-finger contact space. Th i s  is  complicated by the  
fac t  tha t  this space m a y  have more  tha t  one  connected 
cofmponent. T h e  second problem is how t o  associate 
the  immobilizing grasps wi th  punctures .  In this paper 
we solve both these problems, presenting e f i c i en t  algo- 
r i thmic  solu,tions. 

1 Introduction 
In this paper a method is described for grasping pla- 

nar objects in an error-tolerant fashion using a three- 
finger one-parameter gripper mounted on a robot arm. 
An image of the object and its immediate surroundings 
is provided by a camera, mounted directly above the 
object. It is assumed that the mapping from camera 
coordinates to r-eal-world coordinates is known, and 
that the apparent contour of the object can be auto- 
matically extracted as a closed B-spline curve r(s), for 
example using an active contour technique [l, 51 (see 
figure 1). The fingers of the robot gripper are modelled 
as identical cylinders with their axis perpendicular to  
the image plane. Thus the fingers appear as discs in 
the plane. Without loss of generality we can assume 
point fingers as the original object contour can be re- 
placed in the usual manner, via a Minkowski sum with 

the disc. The geometry of the object has been previ- 
ously used to find optimal point grasps [9, 4, 2, lo]. A 
novel method of computing optimal three-finger grasps 
with a one-parameter gripper is presented here. We 
also present a method of computing an approach of 
the gripper which is guaranteed to  reach the chosen 
optimal grasp. This succeeds even if the object is dis- 
placed from its observed configuration either by me- 
chanical vibration or by measurement error. The tech- 
nique is somewhat similar to  those employed in par t  
feeder design, where the objective is to  design fixed 
obstacles to  automatically orient parts on a conveyor 
belt into a stable known configuration [3]. Kinematic 
systems in which energy dissipates over time tend to  
reach configurations where the potential energy is at 
a local minimum, which correspond to  stable poses of 
the object [7]. By choosing the right approach, the set 
of configurations which inevitably lead to  a particu- 
lar stable pose can be maximised, producing a highly 
error-tolerant system. 

Figure 1: A quadratic B-spline is automatically 
fitted to the apparent contour of a pear. 

The caging problem is to  fix the fingers of a robot 
gripper around a stationary object in such a way that 
though the object may have some freedom to move, 
it cannot be removed completely. This is a caging 
configuration, and the problem of finding the maxi-  
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vial caging set of caging configurations was solved in 
the case of two-finger one-parameter grippers by Ri- 
mon and Blake 1111. This caging set has the additional 
property that closing the fingers from any configura- 
tion in the set is guaranteed to reach a particular im- 
mebilking grasp. Here, we extend caging theory to 
the case of one-parameter three-finger grippers. 

In the following, gripper configurations are thought 
of as points in configuration space, or C-space, denoted 
C, which is four-dimensional. The four dimensions are 
the (x,y) translation of the arm in the plane, the ro- 
tation 19 relative to the plane, and the opening param- 
eter of the gripper cr (which is strictly positive). The 
function cr(x) projects configurations x = (2, v, 0, Q) of 
the robot gripper onto the opening parameter a .  The 
subset of C for which none of the fingers intersects the 
stationary object is freespace, denoted F. 
1.1 The caging set 

A caging set K c F is defined such that, given 
x E IC, any configuration connected to x by a path 
in freespace on which a is non-increasing is also in IC. 
Thus, closing the fingers on the object from a caging 
configuration in IC leads only to other caging configu- 
rations in IC. The set IC is defined as follows. Consider 
the set of configurations 

F, = {x E F : a(x) 5 e}.  

Let IC, be the connected component of Fc containing 
the immobilizing grasp 1, and let .(I) = GO. Then 
IC,, contains only the single point 1. As c increases 
from cro, IC, grows as a region and is the set of configu- 
rations reachable from Z without the opening param- 
eter exceeding c. At a certain critical value of c = 01, 
this region joins another component of F, and the crit- 
ical point where this happens is termed a puncture 
yoin,t. Thus any set IC, with c < C J ~  is a caging set and 
the maximal caging set IC is 

I C =  U IC,. 
C < U l  

Caging theory uses the mathematical tool Strati- 
fied Morse Theory [6] to prove that puncture points 
are frictionless equilibrium grasps which are critical 
points of cr with Morse index 1. (A critical point of a 
Morse function f on a manifold M is a point where 
V f = 0 [6]. The Morse index of a critical point is the 
number of negative eigenvalues of the Hessian.) The 
puncture point of the caging set K: is the puncture 
point with least cr value that also passes the topologi- 
cal check, a test which associates puncture points with 
immobilizing grasps. This gives rise to the algorithm 
in [11] for a two fingered gripper, where the set of all 

critical points is calculated and tested by the topolog- 
ical check in order of increasing a-value. In order to 
use this algorithm, all the puncture points must be 
accounted for. In the case of the three-finger gripper, 
the punctures may include three-finger contact points, 
an example of which is illustrated in figure 2. Later, 
the alternate possibility of a two-finger puncture for 
a three-finger grasp is demonstrated, and it is shown 
that the three-finger-contact space can be complicated, 
even for a simple object. 

Figure 2: A three-finger. puncture point (filled circles) as- 
sociated with a three-finger immobilizing grasp (unfilled cir- 
cles), for a gripper whose fingers fo rm the vertices of an 
equilateral triangle. 

2 The three-finger gripper 
For three-finger grippers, the following problems 

must be solved. First, a method for efficiently search- 
ing .F for all the critical points of a is required. Sec- 
ond, these critical points must be classified as puncture 
points, immobilizing grasps and false critical points 
( i . e .  critical points which are not grasps). Third, the 
topological check needs to be extended to deal with 
both two-finger and three-finger contacts. 

One restriction is made on the choice of one- 
parameter three-finger gripper, namely that the Eu- 
clidean distance betwejen any two of the fingers in the 
plane Ifi - fi+l I (where index arithmetic is modulo 3) 
is a strictly increasing function of CT. This restriction is 
acceptable as all standtarcl three-finger griplpers satisfy 
this property. It is important because, if the distance 
between fingers i and i - t  1 varies monotonically with a, 
then knowing the finger positions fi and fit.1 uniquely 
determines the position of the third finger, so we can 
write f i+2  = fi+z(fi, fi+l). This defines three functions 
f l ( f 2 , f 3 ) ,  f2(f3, f l) ,  and f 3 ( f i , f 2 )  which fully describe 
the geometry of the gripper. 

This allows the definition of the contact C-space 
Xij := S XS for any two fingers i and j = it-1 (modulo 
3),  where S is the periodic interval [0, L ) ,  L is the num- 
ber of B-spline spans, a.nd ( s i ,  s j )  E Xij corresponds to 
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a two-finger grasp at  fi = r(si) and f j  = r(sj). Since 
the location of the third finger IC = a + 2 is uniquely 
defined by fk (r(s;), r(sj)), every two-finger contact in- 
volving fingers i and j is represented by a point in Xij . 
This implies that every three-finger contact is repre- 
sented by a point, in each of the Xi j .  

3 Searching for critical points 
The freespace .F is a stratified set, consisting of a 

collection of manifolds called strata. In this section, 
the strata are determined, and then searched for crit- 
ical points. 

3.1 The strata of F' 
The freespace F is formed by the removal of three 

finger C-obstacles from C. These are the configura- 
t,ions where each finger intersects with the object. It 
follows that, points on the boundary of each finger C- 
obstacle are configurations where that finger touches 
the object. 3 can therefore be partitioned into the 
following eight strat,a: 

0 One four-dimensional manifold, the interior of 
freespace, Fo = I ( F ) .  This is the no-finger con- 
tact stratum and contains no critical points of 
0 (XI ,  

0 Three three-dimensional manifolds, F1, &, and 
Fs. These are the one-finger contact strata, con- 
taining configurations where exactly one finger 
touches the object. These strata also do not con- 
tain any critical points of .(.). 

0 Three two-dimensional manifolds, F12, F23, and 
F31. These are the two-finger contact strata, con- 
taining configurations of the gripper where ex- 
actly two fingers touch the object. These strata 
do contain critical points of ~ ( x ) .  

0 One one-dimensional manifold, Fla3. This is the 
three-finger contact stratum. This stratum also 
contains critical points of cr(x). 

These sets form a disjoint partition of F, and sat- 
isfy 7 = n 7 and Fl23 = Fl n FJ n Fz, where s 
denotes the closure of S.  

Let & j  : .Fij + Xij be the smooth 1-1 function, 
mapping configurations of the gripper in which fingers 
i and j are touching the object and k is outside the ob- 
ject, to the corresponding contact configurations. Con- 
sider &(Fl23); this is the set of three-finger contacts 
expressed as a subset of Xi j .  Since qhij is 1-1 we can 
write 

- _ _ _  

where D is the minimum Euclidean distance of a point 
in the plane from the object. Since all these functions 
are continuous, it follows that F123 is the level set of a 
continuous real-valued function on a two-dimensional 
space. Therefore it consists of closed loops and arcs 
which terminate at cr = 0. 
3.2 The two-finger contact strata 

Since q5ij is smooth, the critical points of .(x) on 
F' i j  can be sought in Xij as the critical points of 
a ( s i , s j )  just as in the case of the two-finger gripper, 
by tracking along the antisymmetry set searching for 
intersections of the symmetry set [2]. For the two- 
finger gripper, & (.&) fills the entire contact C-space 
Xi j  except for the axis si = s j ,  where U = 0. In the 
case of the three-finger gripper, it is not necessarily 
true that all three fingers meet at cr = 0. Hence Xij 

may contain regions which do not correspond to  any 
gripper configuration. 

In addition, Xij contains points where the third 
finger lies inside the object. Such configurations are 
not members of F, and form forbidden regions in Xij 
which correspond to  the third finger C-obstacle. Crit- 
ical points in forbidden regions are ignored for this 
reason. The edges of forbidden regions are made up of 
points on the boundary of the third finger C-obstacle, 
which implies that they correspond to  points in F123, 

the three finger contact stratum. 
3.3 The three-finger contact stratum 

F123 is a one-dimensional set. When projected into 
Xij , it consists of a number of closed loops (which sur- 
round forbidden regions) and a number of curved arcs 
which, together with the curve cr = 0, bound forbid- 
den regions (see figure 4). The critical points of cr(x) 
could be easily found by tracking along these curves. 
Unfortunately, there is no obvious way of calculating 
the number of connected components in this stratum, 
and so we cannot easily obtain sample points on every 
component from which to  begin tracking. 

Therefore, the following alternative strategy is 
adopted. Consider the space of all three-finger con- 
tacts, S x S x S. Fixing one of the fingers at a 
particular value, say s1 = t ,  is equivalent to  in- 
tersecting this space with a plane, containing points 
of the form ( t , s2 , sg) .  The position of fingers 1 
and 2 uniquely determines the position of finger 3, 
f3(r(sl),r(s2)). Therefore, any three-finger contact in 
the plane ( t ,  s2,  s3) is also a solution of the equation 

Wf3(r(t),r(s2))) = 0 (1) 

where as before, D(x) is the minimum distance of a 
point from the object. By considering single spans of 
the B-spline, this equation reduces to  a polynomial in 
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s2.  The degree of this polynomial is kept to a minimum 
by using quadratic B-splines, and by using a gripper of 
simple geometry. In any case, for higher order polyno- 
mials, all the roots can be found by a technique such 
as homotopy continuation [8]. Values of s1 are sam- 
pled at  N points per span, on L spans of the B-spline 
in O ( N L 3 )  time. This is then repeated, sampling in 
the s2 and then s3 directions. In this way, the space 
of three-finger contacts S x S x S is effectively divided 
into cubes of side 1/N, and all the intersections of 
the surface of these cubes with .Ti23 are calculated. 
As N becomes large, there will be at most 2 such in- 
tersections per cube, which can be linked to produce 
connected chains of points (see figure 3).  

compute 3-finger contact stratum 

1 For f = 1 , 2 , 3  ; each f inger 

For i = 0, ..., L - 1 ; for  sf in each span 

For t = 0 ,  ..., N - 1 ; N samples of sf per  span 

For j = 0 ,  ..., L - 1 ; f o r  sf+l in each span 

For k = 0, ..., L - 1 ; f o r  sf+z in each span 

Set sf = a + t / N  
For each root s of 

Dk(ff+a(r(sf),rj(s))) = 0 
If (s E BZ and s E ( 0 , l ) )  Then 
Set sf+l = j + s 
Solve r k ( r )  = ff+?(r(sf), r(sf+l)) for r 

If ( r  E R and r E (0 , l ) )  Then 
Set s f + z  = k + T 

Append (SI, s2, s3) to P L I S T  
2 For i = 1, ..., IPLISTl  

Calculate the centre-points ( ~ 1 1 ,  c12, C I ~ ) ,  

( c z I , c ~ ~ , c ~ ~ )  of the two cubes of side 1/N to 
which P L I S T [ i ]  belongs 
Append the vectors ( ~ 1 1 ,  c12, ~ 1 3 ,  i) and 

( c a i , C 2 2 , ~ 2 3 , i )  to QLIST 

3 Sort QLIST lexicographically 
4 For i = 1, ..., IQLIST( 

If Q L I S T [ i ] j  = Q L I S T [ i  + l] j  for j = 1 , 2 , 3  

Mark & L I S T [ i ] 4  connected to Q L I S T [ i  + 114 

Then 

Figure 3: Algorithm for computing the three- 
finger contact stratum. 

A demonstration of the output of the algorithm 
is shown in figure 4, for a gripper whose fingers 

form the vertices of am equilateral triangle. In this 
case, the functions fi+z(fi,fi+l) for i = 1 ,2 ,3  are 
linear and so, for a quadratic B-spline, the function 
D(fi+2(r(t),r(si+l))) is only quartic in si+l. As a re- 
sult, the roots can be icalculated quickly. 
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‘igure 4: Grasping a pear. (Top lef t)  A three-finger 
immobilizing grasp. ( T o p  right) T h e  puncture  grasp of the  
cage, and (grey circles) a configuration ins ide  the  cage. 
( B o t t o m )  T h e  contact C-.space X12 (black curve).  T h e  cage 
is shaded dark. Light grey regions are forb idden  regions, 
and the  black curve boundary i s  t he  three f inger  contact 
space. T h e  immobilizing grasp and the puncture  poin t  are 
shown. 

Having found all of the closed loops and arcs which 
make up the critical points on this stratum can 
be determined as the local minima and maxima of U 

along the curves of .F12:3. 

4 Classification of the critical points 
The classification ,of two-finger-contact critical 

points is exactly as in t:he two-finger gripper case [ll]. 
Local minima (index 0) give immobilizing grasps; sad- 
dles (index 1) give puncture points; local maxima 
(index 2) are ignored. False critical points must be 
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pruned. The three-finger critical points are straight- 
forward; local minima (index 0) give immobilizing 
grasps, and local maxima (index 1) give puncture 
points. All t,hat remains is to prune false critical 
points, using t,he following standard test for a three- 
finger equilibrium-grasp. 

At, a frictionless grasp, contact forces of the three 
fingers are in the direction of the inward-pointing unit 
normals, ni. For equilibrium, the forces must sum to 
zero. Therefore, there must exist scalars X I ,  A2 > 0 
such that Xlnl + X 2 n 2  + n3 = 0. In addition, these 
forces must produce no net moment. This gives the 
equation Xl(rl - 1-3) . tl  + Xa(1-2 - 1-3) . t 2  = 0 where ti 
is the tangent to the curve. A false critical point will 
fail to satisfy one of these equations because it will 
require one of the X i  to  be negative. 

5 The topological check 
The purpose of the topological check is to  associate 

puncture points with immobilizing grasps by demon- 
st,rating a path on which U is monotonic decreasing. 
The key to implementing the topological check is to  
keep track of which fingers are in contact with the ob- 
ject,. The path is then just gradient descent on U in 
th,e relevant stratum until either (a) a local minimum 
of U ( X )  on that stratum is reached, or (b) a free fin- 
ger comes into contact with the object (detected by 
a change in sign of the distance of the finger from 
the B-spline). The track stops if an immobilization 
is reached. Otherwise, the local minimum is false and 
the track continues in case (a) by allowing one finger 
to break contact with the object. In case (b) the trace 
continues in a different stratum by maintaining the 
new contact. See figure 5 for the algorithm. 

6 The parallel-jaw gripper 
A particular gripper for which the three-finger con- 

tact space can be easily computed is the three-finger 
parallel-jaw gripper. It consists of two fingers (f1 and 
f 2 )  and an opposing thumb (f3) .  The thumb moves 
along the perpendicular bisector of the line segment 
joining the two fingers, and the two fingers remain a 
fixed distance apart: If1 - f21 = c. Note that this 
technically breaks the assumption that the distance 
between any two fingers varies strictly monotonically 
with U .  In this special case, the stratum 7-12 cannot be 
searched but contains no critical points anyway. The 
strata .Fa3 and F 3 1  can be searched in the usual way 
as these fingers do satisfy the monotonicity assump- 
tion. Therefore] the problem reduces to  calculating 
the three-finger contact stratum F 1 2 3 .  

For a given contact point of either finger 1 or 2, 
three-finger contacts can be constructed as follows. 
Consider f1  = r(s1) for some fixed SI .  Calculate all 

intersections of the circle centred on fi having radius 
c with the object outline r ( s 2 ) .  These are the possi- 
ble positions of the other finger, f 2 .  Now construct 
the perpendicular bisector of the line segment joining 
fl and f 2  and calculate its intersections with the ob- 
ject outline to  locate the thumb, f3. This set of points 

find puncture associated with 2 

1 Calculate the set A = {AI ] . . . , A a }  of possible 
puncture points (critical points of cr in freespace 
with index 1 which are also grasps and satisfy 

> 0-P)) 
2 Sort the A; by increasing u-value 
3 For i = 1, ..., a 

Calculate the negative eigenvalue X of the Hes- 

For j = 0 , l  

sian at Ai and the corresponding eigenvector e 

If (Ai is a two-finger puncture) Then 

Set t o  = Ai + ( - 1 ) j e e  (where E is a small 
constant) 

If (Ai is a three-finger puncture) Then 
Set t o  to be the previous ( j  = 0) or next 

( j  = 1) three-finger contact in the chain 
While ( t o  is not an immobilizing grasp and 

For n = 0, ... Until (t, is a critical point or a 
free finger comes into contact with the object) 

Set tn+l = t,-(Au)Vu(t,) (where Vu is the 
gradient of the function cr restricted to the cur- 
rent stratum and Au is chosen so that U is mono- 
tonic decreasing on the line segment (&, t,+l)) 

4 t o )  > 47) 

If (free finger f has touched) Then 
Set t o  to the point nearest to t ,  on the stra- 

tum in which finger f is in contact 
If (t  is a false critical point) Then 

in which continued descent is possible 
Set t o  to the point nearest to t ,  on a stratum 

If (t, = 2) Then Return Ai 

Figure 5: Algor i thm for finding the punc tu re .  

PLIST can be turned into a chain in a similar way to  
the algorithm in figure 3, calculating the centre-points 
of the squares of side 1/N in ( S I ,  sa) space to which the 
points belong and inserting the actual s3 value. Near- 
est neighbours in the s3 direction in each square are 
connected to  form chains. See figure 6 for an example 
of this gripper. 

2726 

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 21,2010 at 06:57:13 UTC from IEEE Xplore.  Restrictions apply. 



3 4  ' 4  

14 

12 

10 

8 

6 

4 

2 

s2 

n " 
0 2 4 6 8 1 0 1 2 1 4  

s3 

Figure 6: A three-finger parallel-jaw gripper 
grasping a pear. (Top  Left) T h e  3-finger immobilizing 
grasp. (Top  Right) T h e  puncture point, a two-finger sad- 
dle. (Bo t tom)  T h e  two-finger contact C-space X23 showing 
the forbidden regions in light grey and .Fl;23 as black curves. 
The  hatched regions do not  correspond to  gripper configu- 
rations. T h e  white region is freespace and the dark region 
is  the caging set, wi th  the immobilizing grasp and the punc-  
ture o n  its homdary .  

7 Conclusion 
We have shown how to construct a cage with a one- 

parameter three-finger gripper. Closing the fingers on 
the object from any configuration in the caging set 
gradually restricts the possible movements of the ob- 
ject until it is completely immobilized. The object is 
thus held in a known frictionless immobilizing grasp. 
This paper has also proposed algorithms to efficiently 
compute the caging set, with run times typically under 
10 seconds. 

We made the assumption that the distance between 
any two of the fingers varies strictly monotonically 
with cr. We also assumed that the geometry of the 
gripper permits equation (1) to be written as a poly- 
nomial. However, we also demonstrated the solution in 
the special case where two of the fingers are a constant 

distance apart, breaking these assumptions. This sug- 
gests that the assumption can be relaxed to include a 
Iarger class of grippers. Another extension may be to 
deal with multiple d'egree of freedom grippers. Indus- 
trially, one-parameter grippers are preferred for their 
simplicity. However, it is possible that the problem of 
grasping curved objjects with more complicated grip- 
pers may be greatly simplified by caging theory. 

Finally, although it is easy to construct configu- 
rations in the caging set, it is not clear how to find 
a configuration in the caging set that maximises the 
clearance of the three fingers from the object. Such a 
configuration would be the ideal target to aim for in 
an automatic gripping system. 
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