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Using a Cylindrical Tactile Sensor for 
Determining Curvature 

Ronald S. Fearing, Member, IEEE, and T. 0. Binford 

Abstract-This paper shows how contact curvature can be 
determined from a single contact with a cylindrical tactile sen- 
sor. When the tactile finger touches an unknown smooth convex 
surface, contact location, principal curvatures, and normal force 
are determined from a 4 x 4 window of strain measurements. In 
principle, contact properties can be determined by a linear 
inverse-filter process, but this approach is inherently doomed by 
low sampling density and sensor noise. We use a nonlinear 
model-based inversion from strain measurements back to con- 
tact type. Sensor strains are predicted by convolving the spatial 
impulse response of the rubber skin with the assumed surface 
pressure distribution derived from a Hertz contact model. Gra- 
dient search finds the parameters of the convex second-order 
shape and the force that best fit the sensor data. Experiments 
under laboratory conditions show radius estimation within 10070, 
orientation within 3", and subtactel (tactile element) localization 
to 3% of the element spacing. Using a linearized model, we 
predict error bounds due to sensor noise on the inversion 
process. 

I. INTRODUCTION 

OCAL contact information is important for dextrous L manipulation with multifingered hands. Local shape can 
be defined by second-order surface patches, which are char- 
acterized in differential geometry by position, tangent plane, 
and principal curvatures and their directions. Surface features 
useful for grasping, such as edges and corners, can be 
identified by their high curvatures. Knowledge of local curva- 
ture is important for finger contact stability [l] ,  [9]. Curva- 
ture also provides useful information for object identification 
and shape description, for example, in vision [24]. 

There has been little work in determining curvature using 
tactile sensors. There have been some recent studies in 
attempting to recover surface pressure profiles with tactile 
sensors that are relevant to this work. The basic problem 
with determining surface force distributions is that subsurface 
strain sensor measurements are a low-passed version of the 
surface pressure. The elastic impulse-response function of the 
skin extremely attenuates high spatial frequencies. Speeter 
[29] simulates determining the radius of a sphere using 
second differences of the strain profile. Cameron et al. [7] 
propose an inverse filter approach and suggest that the spatial 
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derivatives used in the high-pass filter operation could be 
obtained by motion of the sensor. Pati et al. [23] and Yang 
[33] examine inverse filtering and regularization approaches ~ 

to recovering surface stress, using simulated data, and very 
high density (8 1 tactile samples) for the two-dimensional 
problem. 

The work mentioned above is useful for recovering an 
unknown surface stress. However, as we shall see, there is a 
complicated relationship between surface stress and indenta- 
tion shape. In many cases it is surface geometry we are 
interested in as well as the net force on the contact. This 
paper assumes that the contact stress corresponds to the Hertz 
contact stress distribution (surface stress is an ellipsoid), and 
we exploit this constraint with a model-based inverse filter. 

Other tactile perception work has not used surface stress 
determination. Montana [2 11 suggests finding surface curva- 
ture by rolling a sensor without slipping about a contact. 
(One cannot always afford to roll a finger; the grasp may be 
disturbed by this motion.) Driels [ 111 and Shekhar et al. [26] 
found line orientation on a flat array. Brock and Chiu [6] 
found surface patch orientation using repeated location meas- 
urements with a force sensor. Allen and Bajcsy [2] built up a 
Coons' patch using multiple measurements. The only tactile 
array curvature experiment found in the literature is Garfinkel 
et al. [20] who used a 3 x 3 tactile sensor to find curvature 
using second differences of deflection. 

Preliminary work with a cylindrical tactile sensor [14] 
showed the difficulty of determining the orientation of a rod 
directly using strain measurements. While a relatively thick 
skin reduces aliasing and improves localization, information 
such as contact orientation is distorted. 

There are two basic types of tactile sensors: those that 
measure surface deflection and those that measure subsurface 
strain. One theoretical advantage of subsurface strain meas- 
urement is that deformations can be small; hence, in the valid 
range for linear elasticity analysis. Practical benefits are that 
the layer of skin above the sensors reduces aliasing and 
protects the sensors. With either type of sensor, the local 
shape measurement is distorted by the compliant skin and 
non-normal contact forces. The analysis and experiments 
reported here use a subsurface strain-type sensor. 

The obvious approach to surface pressure and deflection 
recovery is a linear filter. (Curvature is available from sur- 
face deflection by fitting a second-order surface.) As we 
show in the appendix, this method is limited by the low-pass 
nature of the elastic medium, as we can explain based on 
simple noise and frequency-response models, and demon- 
strate with a simple experiment. 
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To overcome the disadvantages of the linear-filter ap- 
proach, a contact-model-based method is developed. By us- 
ing an a priori constraint on the contact type, which is 
assumed to be locally convex and elliptical, umbilical, cylin- 
drical, or planar, the problems of the linear filtering approach 
can be avoided. This model-based approach uses a nonlinear 
inversion of sensed strain to obtain surface shape. We assume 
frictionless indentation and then, using the Hertz contact 
assumption, the measured strain can be predicted for a given 
contact type. We show that this relationship is numerically 
stable and thus invertible. The inversion is done by numerical 
search and has been tested experimentally for various sizes of 
cylinders and spheres, including point and line contacts. 

11. SENSOR IMPLEMENTATION 
The tactile sensor array is packaged in a molded rubber 

finger tip (Fig. 1). The finger is a 25.4-mm-diameter cylinder 
approximately 25 mm long with a hemisphere on the tip. The 
finger tip sensor uses an array of capacitors formed at 
junctions of perpendicular copper strips, spaced at 3.3 mm 
along the length and 18” around the circumference of the 
cylindrical portion, of which an 8 x 8 subset is used. Rubber 
3.8 mm thick covers the core and is essential to increase 
contact areas and reduce aliasing [12]. The rubber dielectric 
layer is a molded hollow structure (the inverse of [27]). 
Details of finger construction are in [13] and [16]. Other 
cylindrical fingers are described in [2], [4], and [lo]. 

After calibration, the sensor output is normalized to deter- 
mine equivalent strain at each tactel (tactile element). The 
mean sensitivity of the tactels is 4 mN with a 3-mm-diameter 
probe, and they are very linear up to 0.5-N load. (The sensor 
is linear to within 4 mN in the 0-0.5 N range, but only 
within 30 mN in the 0- 1 N range.) 

111. IMPULSE RESPONSE MODEL 

For an ideal linear tactile sensor, the strain beneath the 
surface of the skin is determined by the convolution of the 
surface pressure with the elastic material’s spatial impulse 
response. To determine contact pressure from these strain 
measurements requires some form of deconvolution opera- 
tion. The spatial impulse response is difficult to analyze for 
complicated geometries, such as this finger; thus, we use an 
empirical rather than analytic impulse-response model. To 
get an initial model estimate, we make some gross approxi- 
mations and consider a simplified planar elasticity problem. 
An elastic strip model [18] could be used for the sensor 
capacitor above the hard finger core, but the shape of the 
impulses are approximately the same. 

Consider a slice of elastic material in the x-z plane with 
the applied force per unit length constant in the y direction 
and stresses on the face cry = 0. This “plane-stress” approx- 
imation is shown in Fig. 2. For a normal line load on a linear 
isotropic medium, the z component of strain ( E , )  is [32]: 

where P is the force per unit thickness of the slab in 
Nm-’ s, E (Nm-’) is the elastic modulus (stress per unit 

5 0  60 7 0  80 

Fig. 1 .  Tactile sensing finger for the Stanford/JPL hand. 

Fig. 2. Geometrical approximation for plane-stress model. 

strain), v is Poisson’s ratio, d is ,the sensor depth, and 
r 2  = d2 + x 2 .  Equation (1) is the one-dimensional impulse 
response. By convolving the impulse response with a surface 
force distribution p ( x ) ,  the z component of strain can be 
determined. 

To experimentally determine the one-dimensional impulse 
response, an approximate line load of 0.5 N was applied 
normally at 0.64-mm steps along x while recording one 
tactel (dots in Fig. 3). Depth and Poisson’s ratio parameters 
in (1) were adjusted to best fit the normalized samples in the 
least squares sense, obtaining d = 3.8 mm and v = 0.4. The 
solid curve in Fig. 3 is the plane-stress model with these 
parameters, not an arbitrary best fitting curve. The root- 
mean-squrae (rms) fitting error is 1 .3% of full scale. For a 
central region of 4 x 8 tactels, away from the tip, the rms 
error is between 1.27% and 2.4% with mean rms fitting error 
of 1.9%. The sensor agrees closely to the model, in spite of 
violating the small deflection assumption of linear elasticity 
(peak strain with this load is on the order of 10%). 

When the contact pressure is not constant along the width 
of the contact, a two-dimensional impulse response h ( x ,  y )  
can be convolved with surface pressure p (  x ,  y )  to obtain the 
subsurface strain E J X ,  y ,  d ) .  To moldel the two-dimensional 
impulse response, the cylinder is approximated by the tangent 
plane at the contact point (Fig. 4). The equivalent sensor 
spacing in the y direction is rf sin A0 = 3.9 mm, for angu- 
lar spacing (AO) of 18”, where rf  =. 12.7 mm is the finger 
radius. By applying a small hemispherical probe at 0.635 
mm x 0.635 mm spacing along the x and y axes, 12 x 11 
measurements were obtained. The measured impulse re- 
sponse is not circularly symmetric with respect to its peak. 
We do not have a theoretical model for the strain in the 
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Impulse Response for Knife Edge 
(least squares f i t  to plane stress model) 
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Fig. 3 .  Plane stress model and experimental data. 
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Fig. 4. Sensor geometry around finger circumference. 

cylinder, but an empirical separable impulse response 

h ( x ,  Y )  = h , ( X ) h , ( Y )  (2) 

worked well. For this model, we assume a response of the 
form of the plane-stress equation in the x and y directions 

d:(d: - v ,x2)  
h x ( x )  = 

(x' + d:)2 
(3) 

(4) 

where d,, d, and v,, vy  are equivalent depth and Poisson's 
ratio parameters, respectively, along the cylinder axis and 
around the circumference. Depth and Poisson's ratio parame- 
ters were adjusted to minimize mean square error between 
(2) and the normalized samples, obtained d, = 4 .3  mm, 
v, = 0.5, d, = 6.0 mm, and vy = 0.7. Because we are 
using a spherical load instead of a line load, the strain 
response will no longer have the symmetry required for the 
plane-stress assumption to hold. Values of Poisson's ratio in 
this model > 0.5 are not physically significant. However, it 
is interesting to note that a simple substitution v* = v /( 1 + v) 
[18] can be used to convert the plane elasticity expression 
from plane stress to plane strain. Thus, vy = 0.7 with plane 
stress corresponds to v,* = 0 . 4  with plane strain. Fig. 5 
shows deflection contours over the centralized 8 x 8 samples 
comparing normalized model and experimental data. The rms 
error of the sample fit was 2 . 0 %  of full scale. Note that any 
other ad hoc model for the impulse response could have 
been used instead; however, our choice was made to maintain 

0 1 2 3 1 5 6 7  
position along c i r c u m f e r e n c e  x 1 . 2 7  m m  

Fig. 5.  2D model and experimental impulse response. 

some connection with the physics of the sensor. The Boussi- 
nesq function, which is the strain response for a half space 
with point load [17], [18] is circularly symmetric, and thus is 
not a good choice for the impulse response model. 

IV. DETERMINING CONTACT SHAPE 

We want to determine curvature of a C2 rigid indentor 
pressing into a compliant finger. We need to know the 
contact pressure distribution, and in this section the shape of 
the contact region is determined for this restricted class of 
indentor. If we wish to determine the contact pressure or 
shape more accurately than possible with a linear inverse 
filter, we need to use a constraint on the form of contact. 

We use the classical Hertz contact approximations [32]. 
The bodies are locally smooth and large with respect to 
indentation depth and contact size. Contacts are small com- 
pared to the finger radius. The indentation is frictionless. 
Local yielding is ignored; we assume that contact occurs only 
on the surface of the finger. 

The finger cylinder is approximated locally by a parabola: 

2," CfY' ( 5 )  
where C, = - 1/2R,,  with R, the finger radius (12.7 mm). 
(The finger axes are shown in Fig. 2) .  The body indenting 
the finger is represented by 

( 6 )  ZB = A,X2 + C,J2 + 6 

where 2, J are principal curvature plane axes, 6 is the 
indentation depth, A, = 1 /2R, ,  and C,  = 1/2R',, with 
R ,  and R', principal radii of curvature of the indenting 
body. 

Rotating by the angle $ from indentor to finger coordi- 
nates in (6) ,  where $ is defined in Fig. 6 ,  and setting 
z, = z ,  (the two surfaces are intersecting), we obtain 

x'[ A,C2$ + c ,s2$]  + 2xyc$s$[  A ,  - c,] 

+ y 2 [ c B C 2 $  + A B S 2 $  - cf] = 6 (7) 
where c\k = cos $, and s$ = sin $. Substituting A = 
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Fig. 6. Cylinder contact on finger (top view). 

A,c’$ + C,S’$, B = 2(A, - C,)c$s$, and C = 
C,C’$ + A,s2$ - Cf, we see that (7) is an ellipse: 

A x 2  + Bxy + Cy2 = D .  (8) 
This contact ellipse has its major axis at the angle given by 8 
[31] (Fig. 6) where 

B ( A ,  - C,) sin2$ 
. (9) ( A ,  - C,)COS2$ + Cf tan(20) = ~ - - 

A - c 
For a cylindrical indentor, A ,  = 0. 

axes of the contact ellipse: 
Equation (8) is rotated by 0 to obtain the major and minor 

Zf = A’X’* + C’y’2 ( 10) 
with 

A’ = A C 2 e  + Bs8ce + cs2e 
c‘ = As2e - Bsece + cc2e. 

If the radius of a cylindrical indentor ( R b )  is large with 
respect to the radius of the finger ( Rf), the orientation of the 
contact ellipse (see (9)) no longer corresponds to the orienta- 
tion of the contacting cylinder. Thus, the contact ellipse 
orientation cannot be used directly to determine an indenting 
cylinder’s orientation. 

V. CONTACT PRESSURE 
The pressure distribution corresponding to a frictionless 

contact between two paraboloids is an ellipsoid [18]: 

(11) 

where a and b are the major and minor axis of the ellipsoid 
at z = 0, F is total force, and p ( x ’ ,  U’) = 0 outside the 
contact area. (Fig. 4 shows the ellipsoidal pressure distribu- 
tion in cross section.) The length of the major axis of the 
contact ellipse [32] is 

where Ef is the elastic modulus of the finger, and it is 
assumed that we have a rigid body and a soft finger. The 
factor m( A’, C’) is determined from the solution of the 
elastic deflection equation [ 181, which gives the contacting 
ellipse size. The solution uses the complete elliptic integrals 
of the first and second kind and is tabulated in [8] as a 

function of eccentricity of the contact ellipse. The minor axis 
of the ellipse is given by 

where e is the eccentricity. 
The elliptical contact can now be predicted for a rigid 

cylinder pressed into the cylindrical finger. (Throughout the 
paper, we use Er = 2.5 x lo5 NmP2, the approximate value 
of Young’s modulus for our 8ensor.J For example, a 10- 
mm-radius cylinder with its axis at 45” to the sensor pressed 
with F = 1 N gives a contact ellipse of 11.4 mm X 3.5 mm, 
oriented at 26” from the x axis. (This ellipse will fit inside a 
2 x 2 window of tactels-much smaller than minimum sam- 
pling requirements). Contact ellipses are plotted in Fig. 7 at 
15’ increments in cylinder orientation (along ordinate) and 
six different radii (along abscissa) for 1 N of force. A line is 
drawn to show scale. 

This ellipse calculation breaks down for parallel axes, and 
a different formulation is needed; see [ 181. Another limitation 
is that a predicted contact ellipse may be longer than the 
finger because the analysis assumes infinite-length finger and 
indentor cylinders. Although our method does not handle this 
case, when the contact becomes very long compared to the 
finger length, the surface stress will be approximately con- 
stant along any cross section orthogonal to the finger axis, 
and a two-dimensional plane-strain analysis should be valid. 
The contact stresses for a cylindrical finger pressing against a 
plane were discussed in [12]. 

VI. CURVATURE FROM STRAIN 
If one can predict measured strain as a function of the 

contact condition, in principle the function can be inverted to 
obtain the contact conditions as a function of the strain. 
Estimated sensor strain in the model is obtained from convo- 
lution of the sensor impulse response of (2) with the ellip- 
soidal pressure distribution of (1 1): 

q x ,  r) = h( x ,  r)s tarp(  x ,  r) (14) 
where the planar approximation from Section 111 is used. The 
equations are outlined as: 

where iz is the predicted strain. Using the a priori constraint 
that the contact is a paraboloid, we want to invert (15) to 
obtain contact parameters from measured strain values. 

The tactile sensor discrete samples are represented by an 
array 

where A x  = 3.3 mm and A y  = 3.9 mm are the sensor 
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U 0 0 0 6 0  

H e - 1 5  
1 " " 1 " " 1 " " 1 " " 1  

radius ( m m )  
Fig. 7.  Contact ellipses for cylindrical indentors (to scale) for 1-N load. 

spacing (using the planar sensor approximation). We quantify 
the quality of fit between model and experiment by a normal- 
ized sum of squares. The mean square error (MSE) between 
model and experimental values is calculated for a 4 x 4 
region of the array that contains the peak strain value: 

MSE = l 2  

This expression is normalized by the maximum strain meas- 
ured on the sensor; thus, 4 corresponds to the rms (error) of 
the fit of all elements to the model as a percentage of the peak 
strain. 

is minimized by a gradient search 
technique, where the set of parameters for a cylinder is 
[ R B ,  F,  $, xu, yo]', including the center position of the 
contact x,, yo. The search is started from the interpolated 
center of pressure, which corresponds to the peak strain 
location [13]. The interpolation error due to aliasing is k0.4  
mm along x and k0.5 mm along y .  The gradient adjust- 
ment of position for best rms fit eliminates the systematic 
interpolated position error. 

For this initial work, the goal is to recover curvature from 
the cylindrical tactile sensor-not to extract it in the most 
computationally efficient manner- so slow convergence of 
the gradient method is not a major concern. (Typical times 
were several minutes on a VAX 11 /750.) The error surface 
was examined for several cases and found to be bowl-shaped 
locally, so techniques such as Newton's Method could give 
faster convergence. In experiments, the gradient search (with 
initial parameters far away from the true values) converges to 
the desired values, albeit slowly in some trials. The search 
did not get stuck in local minima; however, we have no 
formal proof of global convergence of the search. The search 
was concluded when AE was < 

The modeling error 

VII. SENSITIVITY TO ERROR 
Good conditioning of the inversion is important for useful 

results to be obtained. We examine cylinder radius and 
orientation estimation limits due to sensor noise. Impulse 

response modeling errors and limitations from the planarity 
and frictionless indentation assumptions are neglected, but in 
practice these systematic biases are more significant than the 
random errors. However, this simplified linear analysis al- 
lows us to make an estimate of the inversion process sensitiv- 
ity to error. 

We assume an additive noise model for the measured strain 
€ 2  

where AeZ is noise and 17 is systematic model error. The 
model error includes geometric effects, possible friction ef- 
fects, and contact assumptions that are violated. In experi- 
ments we found that the dominant sensor noise with no load 
is due to quantization [15]. The strain signal has quantization 
steps (66, )  of 0.1% in dimensionless strain units ( 6 ~ ,  = 
k0.05%), corresponding to 3-mN force sensitivity with a 
3-mm-diameter probe. We make the common assumption that 
quantization errors from analog-to-digital conversion can be 
modeled as a random process with uniform distribution [22, 
p. 4151: the samples' amplitudes vary widely over the 4 x 4 
array compared to quantization step size. Probe noise was not 
spatially independent and appears as an error in applied 
force, which affects all tactels in a correlated manner. Ran- 
dom friction effects, while harder to quantify, seem to be less 
significant than quantization. 

We define two error vectors: the parameter estimation 
error 

c Z  = i ,  + A € ,  + 7 (18) 

A &  = ( A R , ,  A $ ,  AF)' (19) 
and the sensor error 

We want to determine max Ai?, the maximum expected 
error in the radius, force, and orientation estimates as a 
function of max Ag,,  the worst case strain sensor error. The 
measured normal strain is represented as a vector function 
f< ) 

g z o  =f(h $03 4J. (21) 
Since strain is a continuous function of the contact parame- 

ters, for small strain errors, f can be expanded in a Taylor's 
series about nominal values: 

gz = gzo + A s z  = g z o  + J A B  (22) 

where J is the Jacobian of f ( ). For a 4 x 4 array of 
sensors, J is a 16 x 3 matrix. The least squares matrix 
solution [30] for A B  is 

where J + =  ( J ' J )  -IJ7 (the pseudoinverse). J T J  is well 
conditioned for the measurement range used here. With 
independent, identically distributed noise, the parameter co- 
variance matrix is 
A, = J+a:lJ+' = J+Jf7a,Z = a,"( JTJ) - '  = a,"( J'J) - '  

(24) 
where 0,' is the individual sensor noise variance. (Note that 
J'J is symmetric.) 
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Given bounds on expected sensor error (Agz) ,  the worst 
case expected error for each parameter is found independ- 
ently. Examining the rows of J + ,  the maximum parameter 
change in each element of AE will occur when A c z  is 
aligned with .lT, the ith row of J + ,  that is 

max ( A R )  = max ( J T T A g z )  

Similarly, max A $  = 1 J: I 1 A s z  I and max A F  = 
I J z  I I Agz 1 .  The length of the sensor error vector is simply 

with N the number of tactels in the window. Thus, 1 Acz  I 
5 0.2%. Note that error sensitivity may not be uniform. 
That is, the rows of J +  could be J T T  = [000 . . * 1 0 01, 
with all parameter sensitivity due to error at a single tactel. 
However, the rubber skin spreads strain to all sensor sites, 
and thus in practice error sensitivity is well distributed over 
the central tactels in the window. 

Maximum bounds on each parameter are directly related to 
the covariance matrix. That is, max A R , A $ ,  and A F are 
the diagonal elements of JJ+ ', the covariance matrix (24). 
The relation between the error bound and the standard devia- 
tion of any estimate is thus just a scale factor (for a uniform 
distribution) : 

Contact parameter-estimation error bounds are also af- 
fected by the least squares fit of (17). For example, when the 
two-dimensional impulse-response model was determined, 
there was a fitting error of 2% of full-scale rms between the 
experimental data and the model. The peak strain is about 
15% for a 0.5-N load, thus the normalized I Asz  1 in terms 
of full scale was 1.3% (4 &E, 115%). The expected error due 
to quantization would be much less than 1.3% of full scale; 
thus, the impulse model error contains more systematic error 
than sensor quantization error. This systematic error will not 
generally lie in the direction of JT , so it will tend to place an 
overly high estimate on parameter error if used in (25). It 
would be more reasonable to assume that the systematic error 
is uniformly distributed over the tactel window. 

A .  Error Dependence on Applied Force 

Parameter estimation error bounds are evaluated using 
quantization noise. Predicted errors in radius and orientation 
estimation are numerically calculated as a function of force 
for cylinders at 90" to the finger axis, with the contact 
location half way between tactels (Figs. 8 and 9). Better 
performance is predicted with increased contact force (im- 
proved S I N  ratio), and thus greater tactel output and larger 
contact area. According to Fig. 8, radius estimates would not 
be usable unless the force is greater than about 0.5 N. Angle 
error would be reduced with a smaller diameter cylinder, 
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Fig. 8 .  Force dependence of radius error sensitivity. 
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Fig. 9. Force dependence of angle error sensitivity. 

__ 
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which is expected because the contact ellipse becomes more 
eccentric, making orientation less ambiguous. 

The bound on force error A F  was calculated as a function 
of applied force and cylinder radii (not shown). Interestingly, 
the force error is predicted to be relatively independent of 
force, radius, or angle of the contacting cylinder, and has 
bound of f 15 mN. 

B. Error Dependence on Cylinder Orientation 

Figs. 10 and 11 show the error bounds as a function of the 
indenting cylinder's orientation in the range from 30" to 
150", for 1-N force. In the central region (axes perpendicu- 
lar), we expect less than 10% error in radius for the 12.5- 
mm-radius cylinder. The errors increase as the cylinder and 
finger axis get closer to alignment because the contact ellipse 
representation is singular for parallel axes. 

An interesting feature is the jagged appearance of the error 
bounds, which is due to two effects, angle quantization with a 
rectangular sampling grid [19] and the zeros of the impulse 
response. As a cylinder rotates on the surface of the finger, 
the zero crossings of its strain response will be directly above 
certain tactels; that element can have no effective contribution 
to the parameter estimation. There is a blip in the orientation 
estimate for the 12.5-mm-radius cylinder perpendicular to the 
finger. The contact ellipse becomes close to circular here; a 
small change in angle distorts the circle more noticeably in 
this orientation (see Fig. 7). 
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C. Localization Errors 
The position sensitivity can also be predicted in the same 

manner. The worst case predicted error for a 14-mm-diame- 
ter cylinder pressed against the finger at 90", 1 Jz  ' I I A s z  I , 
was found to be A x  I 0.03 mm. This position error is just 
1% of the tactel element spacing along the finger length. 
Localization of a line contact, using the analytic expressions 
from the plane stress model for the strain due to a line 
contact, has localization errors in the range of 1 % for 1 % 
sensor error, so this result is not unexpected. (If the contact 
were known to be a line contact, the outputs of just two 
sensor elements could be used to determine the line contact 
location. Here we have more sensor elements to use.) 

D. Finger Sensitivity Threshold 

This same error analysis provides a tool to quantify the 
minimum detectable force for a finger touching a flat surface, 
which will be the most sensitive type of contact. We want to 
look at the standard deviation of the force estimate U,. Note 
that the contact area increases with increasing force, and the 
contact will be a line contact at low forces. The standard 
deviation of the force estimate, from (24), is 

U, = U, J[ J + J + T ] 3 3  (28) 

where we have selected the diagonal element of A, as the 
force variance. 

The flat contact analysis was approximated by a large-radius 

cylinder indenting the finger at 90". A cylinder with 1500-mm 
radius and 0.05-N force had a predicted contact ellipse length 
of 10.7 mm and width of just 0.53 mm. A larger radius or 
contact force would cause the contact ellipse to exceed the 
finger length, hitting a representational singularity in the 
analysis. The estimated force was found to have a fairly 
constant U, = 1.3 mN for very small forces and a wide range 
of cylinder diameters. The standard deviation of the force 
(U,) is about the same as the standard deviation of each 
tactel; apparently the predicted line contact from the flat 
contact did not increase the contact area sufficiently to allow 
averaging of more tactels. 

VIII. EXPERIMENTAL RESULTS 
A single set of experiments was performed using one 

calibrated version of the tactile sensor, and the results are 
reported here. For the same input conditions, the output was 
consistent. While statistics from multiple experiments under 
same input conditions have not been performed, estimation 
errors were near the worst case prediction, implying that 
unmodeled systematic error was significant. 

Curvature estimation was tested by pressing a cylindrical 
probe normally into the finger sensor and sequentially read- 
ing all elements in the 8 x 8 tactel array in approximately 
0.1 s. The strains were linearized by a lookup table. The 
residual sensor strain (hysteresis) was zeroed before each 
measurement. A Delrin or aluminum probe was attached to a 
balance beam, and the applied force was controlled to 5% by 
the weight on the beam. The finger was mounted on a 
machinist's table and positioned under the probe. The table 
was accurate to 25 pm in translation and about 0.1" in 
rotation. 

The low-pass property of the skin complicates extracting 
angle and radius information from strain. Fig. 12 shows 
contours of constant strain for a 25-mm-diameter cylinder 
applied at 70" with 1-N force. The strain contours are a 
distorted version of the surface pressure and do not appear to 
directly contain information of the indenting cylinder's diam- 
eter and orientation. Thus, it seems that simple heuristic 
methods for determining curvature, such as calculating mo- 
ments of strain measurements, are not likely to be very 
successful. Note that a 4 x 4 window of strain measure- 
ments, as used in our algorithm, covers most of the signifi- 
cant portion of the strain pattern. 

The four impulse response parameters ( d x ,  d, ,  v x ,  v,), the 
modulus of elasticity E,  and the sensor spacing (determined 
from design parameters 3.3 mm and 18") are not adjusted by 
the gradient search. The model parameters are determined 
from design values and independent sensor characterization 
experiments. 
A .  Cylinder Diameter 

For this set of measurements, cylinders were applied or- 
thogonally to the finger above tactel [24] to eliminate cell 
variation effects. Section VIII-C demonstrates that force and 
radius estimation are position independent. Fig. 13 shows 
sensed versus actual cylinder diameter (details in Table I). 
Radius errors are < 1 mm, which agrees with the error 
bound of Fig. 8, except for the 66-mm-diameter cylinder. 
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Fig. 13. Estimated cylinder diameter for $ = 90". 

The 66-mm-cylinder contact ellipse is 9.9 x 5.5 111111, which 
may be too wide for the planar finger approximation to be 
valid. Force is estimated within about 10% except for larger 
diameters, but the error analysis predicts A F  < 0.015 N. 
Gain variations from calibration may cause this error. 

If estimates are close to the "maximum" error, then 
systematic error in the sensor model has more effect than 
quantization. A refined, higher order model for the sensor 
would consider the sources of these residual errors.. For 
example, every tactel could have its own individual impulse 
response model, and a position calibration could be used to 
locate exactly the placement of all cells. This refined model 
could then compensate for manufacturing variations. 

The rms error (0 in Table I suggests how well the 
gradient search fit a paraboloid indentor (processed through 
(15)) to the 4 x 4 set of strain measurements for each 
contact. An rms error of < 3% of full scale is good com- 
pared to the 2% rms fitting error for the impulse response of 
Section 111, and here there are additional error sources such 
as cell-to-cell variations. Better fit (lower rms error) seems to 
be correlated with better radius estimation. 

The estimated contact ellipse width a = 2.25 mm for the 
10-mm-diameter cylinder contact is smaller than the 3.3-mm 
sensor spacing. This subtactel "resolution" is possible be- 
cause the surface deflection is a second-order function, and 
thus the space of possible strain functions is constrained. 

B. Cylinder Orientation 
Determining the local orientation of objects on a finger is 

perhaps more useful than radius estimation. (For example, 
controlling the attitude of a part in a robot hand could use the 
orientation information.) 

Good angle estimation was obtained with a 25-mm-diame- 

TABLE I 
DETERMINING CYLINDER DIAMETER FOR CONTACT AT 90" 

~ ~~ 

Diam. (mm) Force (N) Est. Diam. Est. Force rms error 

0 .3  
3 
7 

10 
14 
25 
32 
38 
66 

0.5 1 . 1  
0.5 4 .5  
1 .o 7 . 0  
1 .o 11.6 
1 .o 14.2 
1 .o 27.0 
1 .o 30.8 
1 .o 37.7 
1 .o 60.6 

0.42 
0.49 
0.96 
1 . 0 9  
0.91 
1.02 
1.07 
1.19 
1.16 

3 .09% 
2.78% 
2.15% 
2.95% 
1.56% 
1.78% 
1.69% 
2.11% 
2.16% 

ter cylinder (Fig. 14). For these experiments the cylinder was 
applied with 1-N force at a random position, not above 
element [2 41. The random position did not reduce accuracy; 
the angle error A$ ( + 3" near 90") was within the predicted 
bounds of Fig. 11. Radius estimates were unreliable as the 
cylinder axis became close to the finger axis. Here the 
predicted contact ellipse extended beyond the finger cylinder 
ends, but was still aligned with the tactile samples for best fit. 
Fig. 15 shows the poor radius estimation obtained when the 
cylinder orientation was not within about 45" of perpendicu- 
lar to the cylindrical sensor axis. 

C. Position Independence 
It is important to characterize the variation in estimation 

quality with contact position on the sensor. Variation with 
contact position should identify inhomogeneities in sensor 
fabrication or calibration. 

A 14-mm-diameter cylinder perpendicular to the finger 
was moved along the finger ( x )  axis in 0.381-mm steps, and 
the plot of sensed and ideal location is shown in Fig. 16. 
Residual errors were < _+ 0.1 mm, or just 3 % of the tactel 
spacing. Since the sensor was hand fabricated, the sensor 
spacing may be 3.2 mm instead of the nominal design value 
of 3.3 mm. Note that the cylinder indented into the finger 
about 0.4 mm, which was a significant position change with 
respect to the localization accuracy. 

The radius estimate for this experiment seems to have 
random fluctuations (< f 0.5 mm) as a function of position. 
The force estimate has little variation (< kO.05 N) and is 
consistently low, which may be due to a balance beam or 
model error. Contact location dependencies were not seen. 
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Fig. 16. Tracking cylinder position. 

D. Determining Both Principal Curvatures 
The previous sections used the cylinder-contact constraint. 

We now find both curvatures R ,  and Rlt) (see (6)) .  Since 
there is one more parameter to find, we might expect noisier 
estimates because our measurement set is statistically less 
adequate. Note that the ellipsoid space (two axes, one orien- 
tation, one amplitude) has enough dimensions to be unique 
for every curvature and force combination. The contact 
ellipse may be the same for different surfaces, but the ampli- 
tude of the ellipsoid will distinguish between them. 

Experiments with three spheres are summarized in Table 
11. The contact ellipse was aligned with the x and y axes, as 
expected. The curvature error was greater in the circumfer- 
ence direction (Rlt)), as expected due to the lower frequency 
response along y .  R i  for the large sphere was estimated 

TABLE I1 
DETERMINING BOTH PRINCIPAL CURVATURES 

~~ 

Object R ,  R L  Est. R,, Est. R', rmserror 

sphere 
sphere 
sphere 
knife 
cyl. edge 
cylinder 
plane 
vertex 

1.5 1.5 1 . 1  0.1 
18.5 18.5 20.3 22.2 
28.5 28.5 25.7 52.8 

0 .2  s- 1 0 .5  41.0 
= 0 12.5 0.6 22.0 
12.5 S 1 15.5 200.3 
P 1 % 1 150.0 11.7 
= 0 = 0 0.0 0.0 

2.03% 
1.77% 
3.30% 
3.30% 
4.65% 
1.67% 
5.18% 
5.08% 

rather poorly. The radius error bound for the 28.5-mm-radius 
sphere in the y direction, ARI, ,  was found to be eight times 
the radius error A R B  in the x direction. With a 1-N load, 
the predicted A R ,  is about 1.5 mm, which explains some of 
the observed Rlt) error. Another error source is the Hertz 
contact assumptions when contacts are large compared to 
finger size. The cylinder constraint is not necessary for 
proper convergence of the least square fit; as seen in Table I1 
for a 25-mm cylinder, we found R within 25% and Rlt) 9 

Edges and vertices are interesting features that provide 
secure grasping points and can be characterized by a very 
small radius of curvature in at leat one direction (see Table 
11). For a plane we sensed two large contact radii, but the 
contact was parallel to the finger axis and therefore suspect. 
This contact would appear to be the same as a large cylinder 
aligned with the finger axis. A simple experiment of rotating 
the finger several degrees (> A$),  and observing that the 
estimated contact orientation is still aligned with the finger 
axis, could be used to determine if the contact were with a 
plane and not a cylinder. 

We expect random contacts that are not C 2  to have a 
larger fitting error since there may not be enough parameters 
in the Hertz model to adjust. Some preliminary experiments 
were conducted with a vertex of a cube and the end edge of a 
cylinder. The algorithm was unable to fit these contacts very 
well, as shown in Table 11. If the contacts are not convex, we 
should be able to distinguish these cases if the features are 
further apart than the sensor spacing. Objects that are not C' 
may fit well and be indistinguishable. A good approach might 
be to evaluate several classes of contact models to see if a 
better fit could be obtained with one of the classes; however, 
this has not yet been attempted. 

R E .  

IX. SUMMARY AND FUTURE WORK 
We have shown that a "low-resolution" sensor using only 

a 4 x 4 window can give good detail about the surface 
contact using only a simple elastic analysis with Hertz contact 
models. Because of the constraint on the expected surface- 
stress distribution, it is possible to get beyond the linear- 
filtering spatial-bandwidth limitations to determine the local 
shape accurately. Using a linear-filter approach, we would 
need approximately 10 times the sensor density to achieve 
comparable accuracy. 

The curvature determination algorithm was tested on an 
actual tactile sensor using mainly cylindrical contacts. Exper- 
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imental results show accurate angle determination to -+3” for 
cylinders. Radius estimation was fairly good- f 2 mm or so 
when the cylinder was at right angles to the finger. Force 
sensing was the least accurately recovered parameter, al- 
though 10% is usable. It would not be easy to servo on the 
force estimates because of elastic hysteresis and the slowness 
of the present estimation algorithm. 

The experimental conditions tended to give a best case 
performance. The cylindrical probe was aligned horizontally 
and normally to be directly above the finger. The forces were 
large enough to be outside the quantization level but small 
enough to be close to the sensor’s linear range. The probes 
were smooth, rigid, and polished; thus, the frictionless inden- 
tation assumption is reasonable. If there were any tangential 
surface stresses because the force was applied at an angle, the 
Hertz contact analysis would need to be modified to include 
these stresses, as in the analysis by [28]. 

There are many modeling errors. Gain calibration is only 
accurate to 5 % . Copper strip positioning during fabrication 
causes sensor position errors. The measured “strains” are 
really large-scale deflections, not infinitesimal quantities. The 
separable impulse response model is wrong and can cause 
problems for contacts that are not along one axis. Surpris- 
ingly, we were able to achieve reasonable orientation estima- 
tion, despite the simplistic assumptions and models. An ad 
hoc impulse-response model was used; however, it fit well to 
the experimental data. The most important characteristic of 
the sensor was that it behaved approximately as a linear 
system, which made possible the model-based curvature- 
from-strain inversion. Other empirical models of the sensor 
(which fit as well) should also perform as well. 

The sensor sensitivity and density is adequate for estimat- 
ing cylinder diameters and orientation, and diameters of 
small spheres. A weighted average of multiple contacts would 
improve performance, or the finger orientation could be 
adjusted to its most sensitive range. However, the goal of this 
work was to obtain the maximum information from a single 
contact. The algorithm should be expanded to handle cylin- 
ders in alignment with the finger axis and any case where the 
contact goes to the end of the finger. A new rubber material 
would reduce hysteresis and increase stability. When the 
curvature sensing runs in real time, it will be quite useful for 
high-level tactile feedback with a dextrous robot hand. 

APPENDIX 

CONTACT SHAPE OR PRESSURE USING INVERSE 
FILTERING 

In Section 111, we fit an empirical impulse response to the 
discrete strain measurements from the tactile sensor. Can this 
impulse response be inverted to perform a deconvolution? 
Here we examine the performance of one-dimensional in- 
verse filters for determining contact shape or surface pressure 
from strain measurements. There is a linear transform K 
between surface deflection and measured strain, and a linear 
transform H between surface stress and measured strain that 
can be inverted using Fourier transforms: 

W ( S )  = K-’(s)E,(s) ( A W  
where s is in cycles per millimeter; PO, WO, and E,() are 
the surface pressure, normal deflection, and strain, respec- 
tively, in the frequency domain; and H -  ’( ) and K -  I (  ) are 
the inverse frequency responses of the elastic medium for 
pressure and deflection, respectively. In principle, given 
adequate sampling density to avoid aliasing, a band-limited 
surface stress or deflection profile can be recovered from the 
discrete strain measurements. 

The frequency response for the plane-stress model is ob- 
tained by taking the Fourier transform of (1) (for depth 
d = Z) 

- 1  
E H ( s )  = - [1  - U + ( 1  + ~ ) 2 7 r z l s l ] e - ~ ” ~ ~ ” ~ .  (A2) 

In the plane-stress model, the deflection at depth z can be 
obtained by integrating the equation for normal strain E ?  = 

d w / a z  from 03 to z.  The surface deflection can then be 
found as a function of the measured strain at depth d [18] 

2 e2adl s I 
w(s) = E&) 2 * l s l ( l  - U +  ( 1  + u)27rdls l )  

= K-l ( s )E , ( s ) .  (A3) 

The surface pressure is obtained from 

Both K- I (s) and H -  I (s) are ill-behaved functions that grow 
exponentially with frequency, so they cannot be used directly 
as inverse filters without band limiting. 

The sampling of the strain function puts an upper limit on 
the frequency response of the inverse filter. For 3.3-mm 
sampling along the x direction (the sensor spacing along the 
axis), the antialiasing filter needs a cutoff below 0.15 
cycles/mm. By taking repeated measurements as the finger is 
scanned along a fixed object, the effective sensor density can 
be increased to reduce the aliasing effects. It is worthwhile to 
examine the frequency response limitations from the elastic 
layer above the sensors, in addition to the sampling limits. 

We measured the spatial frequency response of the sensor 
(Fig. 17) by taking the FFT of the impulse response of Fig. 
5. If we consider amplitudes < 1 % of the zero frequency 
signal to be masked by noise, the approximate cutoff frequen- 
cies are about 0.25 and 0.15 cycles/mm along the x and y 
aces, respectively. Any inverse filter must be band limited to 
this range. The uncertainty principle (see, for example, [ 5 ] )  
implies that the smallest feature obtained from the inverse 
filter operation would be greater than 4 mm x 6.7 mm. 
Reducing measurement noise (which is assumed here to be 
uncorrelated with position, i.e., white) increases the effective 
cutoff frequency. But the frequency response for a plane-stress 
model is low pass with a negative exponential in frequency, 
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Fig. 17. Measured spatial frequency response of sensor. 

so even increasing the signal-to-noise ratio by 40 dB only 
approximately doubles the cutoff frequency. 

Because of undersampling, the inverse filter appkoach will 
provide an aliased version of the original input. This aliased 
version will not necessarily contain the desired curvature 
information. (See [16] for a discussion of the amplitude and 
localization errors that result from aliasing.) The pressure 
signal is reconstructed without any constraint on the form of 
the pressure distribution. Constraining the desired signal to 
the limited space of ellipsoidal pressure distributions is shown 
to be useful in the main body of the paper. The inverse filter 
approach has merit for the more general shape determination 
problem, such as the length of a bar pressed into the finger, 
but the resolution of length is limited by the frequency 
response of the medium, and aliasing. 

Noise Limits to Resolution 
In the tactile sensor, the measured strain is in effect a 

blurred image of the surface pressure. From image process- 
ing, a common restoration technique for blurred images is the 
Wiener filter [25]: 

where r?-'(s) is the Wiener inverse filter, and S N ( s )  is the 
power spectrum of the noise. We consider a simplistic addi- 
tive noise model: 

t Z ( x ,  t )  = E,(x, t )  + e ( t )  (A6) 

where e( t )  is an additive error. Note (as seen in Fig. 3) that 
the strain values in the tactile array change significantly over 
tactel-spacing distances with loads on the order of 0.5 N. 
These strain values are large with respect to analog-digital 
converter quantization levels. Thus, we have modeled the 
error due to quantization with step size as a uniformly 
distributed randam variable. We make the common assump- 
tion that this noise is uncorrelated from sample to sampled 
[22]. With this assumption, the variance is 

40.0 

20.0 

0.0 

-20.0 

- 4 0 . 0 L '  ' ' ' ' ' ' I ' 

0.0 0.1 0.2 0.3 0.4 0.5 

frequency, cycles/rnm 

Fig. IS. Power spectrum of sensor response and noise sources. 
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Fig. 19. Inverse (Wiener) pressure restoration filter. 

p o s  1 t ion ( m m )  

Inverse filtered knife edge. Fig. 20. 

and we can assume white noise with a power spectrum 

where we used the experimentally observed value of = 
k 0.05 % strain quantization. 

One method of increasing the effective sampling density of 
the sensor is by making subtactel translations of the sensor 
while taking multiple measurements. However, because the 
application force has variation for each sample, another noise 
source is added-the jitter of the force probe. (The force 
application device is a low-friction balance beam, but mea- 
sured force can depend on impact velocity and position jitter 
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during initial contact. The standard deviation for the force 
probe was measured at about 0.3% strain). The noise spectra 
for probe jitter and quantization error are shown in Fig. 18 
superimposed on the power spectrum of the plane-stress 
response. 

The Wiener inverse filter for pressure is shown in Fig. 19 
where the noise power U,‘ = 2.5 x includes probe 
jitter. The inverse filter de-emphasizes frequencies above 
which the noise power exceeds the signal power, so the 
effective cutoff frequency is < 0.5 cycles/mm. 

A simple test of the effectiveness of the Wiener inverse 
filter was conducted. Strain samples from one element were 
measured as a 0.3-mm knife edge was moved along the finger 
axis with steps of Ax = 0.51 mm. The restored pressure 
distribution in Fig. 20 has a width of about 5.1 mm. The 
bandwidth limitation due to sensor noise limits the resolution, 
as expected, to be greater than 4 mm. This resolution is not 
sufficient for curvature determination because at reasonable 
contact forces, contacts are not much bigger than this. The 
model-based method described in the main body can get 
“super-resolution, ” well beyond the limits set by linear 
filtering and the sampling theorem. 
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