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Abstract

This paper addresses the problem of computing stable grasps of three�dimensional poly�

hedral objects� We consider the case of a hand equipped with four hard �ngers and assume

point contact with friction� We prove new necessary and su�cient conditions for equilibrium

and force closure� and present a geometric characterization of all possible types of four��nger

equilibrium grasps� We then focus on concurrent grasps� for which the lines of action of the

four contact forces all intersect in a point� In this case� the equilibrium conditions are lin�

ear in the unknown grasp parameters� which reduces the problem of computing the stable

grasp regions in con�guration space to the problem of constructing the eight�dimensional

projection of an eleven�dimensional polytope� We present two projection methods� the �rst

one uses a simple Gaussian elimination approach� while the second one relies on a novel

output�sensitive contour�tracking algorithm� Finally� we use linear optimization within the

valid con�guration space regions to compute the maximal object regions where �ngers can be

positioned independently while ensuring force closure� We have implemented the proposed

approach and present several examples�
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� Introduction

When a hand holds an object at rest� the forces and moments exerted by the �ngers should

balance each other so as not to disturb the position of this object� We will say that such a

grasp achieves equilibrium� For the hand to hold the object securely� it should also be capable

of preventing any motion due to external forces and torques� We will say that such a grasp

achieves force closure� This paper addresses the problem of characterizing and computing

four��nger equilibrium and force�closure grasps of polyhedral objects� Its main contributions

are in two areas�

� We give a new geometric characterization of equilibrium and force closure� Assum�

ing hard��nger contact and Coulomb friction� we show in the �rst part of the paper that

non�marginal equilibrium grasps are in fact force�closure 	Proposition �
� We then use

line geometry to completely characterize all possible types of four��nger equilibrium grasps

	Proposition �
 and prove a simple su�cient condition for equilibrium and force closure

	Proposition �
�

� We present an e�cient algorithm for computing concurrent grasps� In the second part
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of the paper we focus on concurrent grasps� a class of equilibrium grasps for which the

lines of action of the contact forces all intersect in a point� In this case� the equilibrium

condition of Proposition � is linear in the grasp parameters� which reduces the problem of

computing the stable grasp regions in con�guration space to the problem of constructing

the eight�dimensional projection of an eleven�dimensional polytope� We present two projec�

tion methods� the �rst one uses a simple Gaussian elimination approach� while the second

one relies on a novel output�sensitive contour�tracking algorithm� Finally� we use linear opti�

mization within the valid con�guration space regions to compute the maximal object regions

where �ngers can be positioned independently while ensuring force closure�

��� Related Work

We brie�y review the literature on force closure grasp analysis and synthesis and examine its

relation with our work 	see also 
Mishra and Silver� ����� Pertin�Troccaz� ����� and 
Murray

et al�� ����� Chapter �� for recent surveys
� The notion of force closure was introduced by

Reulaux at the end of the nineteenth century in his study of the properties of mechanisms


Reulaux� ������ and it has been used in the context of robotic grasp analysis since Salis�
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bury�s PhD work 
Salisbury� ������ Most of the research on force�closure grasping has been

concerned with the following problems�

� Deciding how many �ngers are required for force closure� In the frictionless case�

Reulaux 
������ Somov 
����� and� much later� Lakshminarayana 
����� have shown that four

	resp� seven
 �ngers are necessary to achieve force closure of a �D 	resp� �D
 object� In turn�

Mishra� Schwartz� and Sharir 
����� have shown that six 	resp� twelve
 �ngers are always

su�cient for objects without rotational symmetries� and Markensco�� Ni� and Papadimitriou


����� have tightened this result by showing that under very general conditions� four 	resp�

seven
 �ngers are su�cient to achieve a force�closure grasp of a �D 	resp� �D
 object without

rotational symmetries� They have also shown that when Coulomb friction is taken into

account� three �ngers are su�cient in the �D case� and four are su�cient in the �D case�

This result and the recent availability of three� and four��nger hands such as the Salisbury

hand 
Salisbury� ����� and the Utah�MIT Dextrous Hand 
Jacobsen et al�� ����� are practical

motivations for our study of four��nger grasping under Coulomb friction�

� Testing for force closure� Given a set of n primitive contact wrenches 	i�e�� of vectors
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combining the forces and moments exerted by the �ngers� see next section
� Salisbury and

Roth 
����� 
Salisbury� ����� Chapter �� have shown that a necessary and su�cient condition

for force closure is that a strictly positive linear combination of the primitive wrenches is zero

and the primitive wrenches span the whole wrench space 	alternative proofs can be found in


Nguyen� ����� and 
Trinkle� ����� for example
� Mishra� Schwartz� and Sharir 
����� have

also shown that equilibrium is achieved when the origin of wrench space lies in the convex

hull of the primitive wrenches� and force closure is achieved when the origin lies in the interior

of the convex hull� These conditions are essentially binary in nature� a grasp is� or is not�

force closure� This has motivated Kirkpatrick� Mishra� and Yap 
����� and later Ferrari and

Canny 
����� to develop quantitative tests for force closure using the radius of a maximal ball

centered at the origin and included in the convex hull of the primitive wrenches as a measure

of goodness of the grasp� An alternative quality measure� proposed by Trinkle 
������ is the

maximum minimum value of the primitive wrench intensities achieving equilibrium�

The conditions for force closure mentioned so far hold for arbitrary numbers of �ngers�

In speci�c cases 	two� three� or four �ngers
 it is possible to characterize the geometric
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arrangement of the contact forces that achieve equilibrium or force closure� in particular� it

is easy to show that two forces are in equilibrium when they oppose each other and share the

same line of action� and that three forces are in equilibrium when they add to zero and their

lines of action intersect at a point� Ji and Roth 
����� 
Ji� ����� Chapter �� have used this

fact to give several conditions on the �nger positions and surface normals that guarantee

that the contact wrenches can resist any pure force� any pure moment� and any combination

of force and moment� In the planar� two��nger case� Nguyen 
����� Corollaries � and �� has

proven that non�marginal equilibrium implies force closure� and remarked that the geometric

characterization of two��nger equilibrium given above also provided a su�cient condition

for force closure� Ponce and Faverjon 
����� have generalized this approach to the three�

�nger case� and we will use this approach once more in the four��nger case� Characterizing

equilibrium geometrically is more di�cult in this case� but it can be done using classical

results from line geometry 
M�obius� ����� Ball� ����� Dandurand� ����� Merlet� ������

� Planning force�closure grasps� Algorithms for grasp synthesis may be aimed at com�

puting optimal grasp forces given �xed �nger positions� at computing at least one 	maybe
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optimal
 force�closure grasp �nger con�guration� or at computing whole regions of the

grasp con�guration space that yield force closure� For given �nger positions� Kerr and

Roth 
����� 
Kerr� ����� Chapter �� have proposed a numerical constrained�search algo�

rithm for optimizing the equilibrium forces applied by the �ngers� and Ji and Roth 
�����


Ji� ����� Chapter �� have given an analytical method for minimizing the dependence of

the forces achieving equilibrium on the friction coe�cient� Mishra� Schwartz� and Sharir


����� have proposed linear�time algorithms for computing at least one �nger con�guration

achieving force closure for frictionless polyhedral objects� Markensco� and Papadimitriou


����� have shown how to choose force�closure grasps of polygonal objects that minimize

the worst�case forces that may have to be applied� and Mirtich and Canny 
����� have

recently proposed algorithms for computing optimal grasps of polyhedra according to the

criterion of 
Ferrari and Canny� ����� 	of course� many other optimality criteria could also

be used� including the grasp e�ciency measures mentioned earlier 
Kirkpatrick et al�� �����

Trinkle� ����� or the functional criteria proposed by Li and Sastry 
�����
�

In each of these works� the grasp�planning algorithm outputs a single grasp for a given

�



set of contact faces� Nguyen 
����� has proposed instead a geometric method for computing

maximal independent two��nger grasps of polygons� i�e�� segments of the polygonal bound�

ary where the two �ngers can be positioned independently while maintaining force closure�

requiring as little positional accuracy from the robot as possible� and Pollard and Lozano�

P�erez 
����� have used a direct generalization of this approach to plan three��nger grasps of

polyhedral objects as part of a whole manipulation system� including obstacle avoidance� and

feasibility and reachability tests� Ponce� Stam� and Faverjon 
����a� and Chen and Burdick


����� have also generalized Nguyen�s approach to two��nger grasping of curved objects by

using algebraic cell decomposition and global optimization methods� Ponce and Faverjon


����� have proposed a totally di�erent computational approach to three��nger grasp plan�

ning� relying on variable elimination 	or equivalently� polytope projection 
Fourier� �����

Lassez� ����� Huynh et al�� ����� Lassez and Lassez� �����
 to characterize the regions of the

grasp con�guration space that yield force closure� and using linear optimization within these

regions to compute maximal independent grasps� We generalize this approach to three�

dimensional four��nger grasping in this paper� From an algorithmic viewpoint� the main
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di�erence with the two�dimensional three��nger case is that the dimension of the con�gu�

ration space is much higher 	eleven instead of �ve
� which has prompted us to replace the

variant of Fourier�s projection algorithm 
Fourier� ����� used in 
Ponce and Faverjon� ����� by

novel and much more powerful algorithms for projecting a polytope from a high�dimensional

space onto a lower�dimensional sub�space�

The rest of the presentation is organized as follows� Section � discusses the notions of

force closure and equilibrium� and gives several necessary and�or su�cient conditions for

equilibrium and force closure� Section � describes our grasp�planning algorithm� Results are

presented in Section �� Finally� future research directions are brie�y discussed in Section ��

All proofs are relegated to the appendix�

A preliminary version of this paper appeared in 
Ponce et al�� ����b��

� Geometric Conditions for Equilibrium and Force

Closure

In this section we start with some elementary notions of screw theory� then formally de�ne

force closure and equilibrium and clarify the relationship between these two concepts� We
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also give several necessary and�or su�cient conditions for equilibrium and force closure� and

present a complete characterization of all types of four��nger equilibrium grasps�

The whole discussion is based on the notion of wrench from screw theory 
Ball� �����

Hunt� ����� Bottema and Roth� ����� Ohwovoriole� ����� Ohwovoriole� ����� Roth� �����

McCarthy� ������ Wrenches are six�dimensional vectors combining forces and moments� and

are most conveniently studied using a line� rather than a point�based geometry� Accordingly�

our characterization of equilibrium grasps is based on the classi�cation of certain varieties

of lines in Grassmann geometry 
Dandurand� ������

��� Screws� Twists and Wrenches

We recall some elementary notions of screw theory� The following is largely based on Roth�s

excellent introduction 
Roth� ������ See 
Ball� ����� Hunt� ����� Bottema and Roth� �����

Ohwovoriole� ����� Ohwovoriole� ����� McCarthy� ����� for more details�

A screw is a straight line with a pitch� The pitch is a linear magnitude that can be

thought of as the rectilinear distance through which a nut attached to an ordinary screw

is translated parallel to the screw axis while the nut is rotated through a unit angle 
Ball�
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������

Screws provide a uni�ed representation for displacements and forces� from Chasles� the�

orem� any displacement of a rigid body can be described by a single rotation about a unique

axis� combined with a unique translation parallel to this axis� The rotation axis is called

the screw axis� and the ratio of the linear translation to the rotation angle is the pitch of

the screw� The displacement is referred to as a twist about a screw� Its magnitude is the

angular rotation about the screw axis� In�nitesimal displacements and rigid body motions

can also be described by twists�

From Poinsot�s theorem� any system of forces and moments applied to a rigid body can

be uniquely replaced by a single force and a couple� such that the force is parallel to the axis

of the couple� In turn� these can be represented by a unique screw axis� a moment about

this axis� and a force along it� The pitch of the screw is the ratio of the moment to the force�

This combination of force and couple is called a wrench acting on a screw� The magnitude

of the wrench is the magnitude of the associated force�
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Algebraically� a screw can be represented by a sextuple of screw coordinates�

s � 	u�x� u� pu
�

where u is a non�zero vector parallel to the screw axis� x denotes the coordinate vector of an

arbitrary point on the axis� and p is the screw pitch� Alternatively� we can write the screw

coordinates as s � 	u�v
� where u�v are three�dimensional vectors�

Screw coordinates are homogeneous and a screw does not have a meaningful magnitude�

in other words� screws form a �ve�dimensional projective space� However� screw coordinates

can also be used to represent twists and wrenches� which are truly six�dimensional entities�

In this case the magnitude of the screw coordinate vector is the magnitude of the associated

twist or wrench�

We are now in a position to de�ne force closure� but before closing this section� let us

make one more remark that will be the key to our characterization of equilibrium and force�

closure grasps� the wrench associated with a pure force 	with no torque component
 has a
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zero pitch� in other words� its screw coordinates are those of a line�

��� Force Closure and Equilibrium

We consider positive grips 
Mishra et al�� ����� Mishra and Silver� ����� constructed as non�

negative linear combinations of primitive wrenches 	this amounts to assuming non�sticky

�ngers
� and associate with a system of n primitive wrenches w�� � � � �wn the wrench set

W � f
nX

i��

�iwi � �i � � for i � �� � � � � ng�

De�nition � A system of n wrenches w�� � � � �wn is said to achieve force closure when the

corresponding wrench set W is equal to IR��

Intuitively� a system of wrenches achieves force closure when any external load can be bal�

anced by a non�negative combination of the primitive wrenches� Force closure is sometimes

called force�torque closure 
Mishra et al�� ����� Mishra and Silver� ������ A related no�

tion is form closure 	also called complete restraint
 
Reulaux� ����� Lakshminarayana� �����

Salisbury� ������ a system of wrenches acting on some object is said to achieve form closure
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when it prevents all motions 	including in�nitesimal ones
 of this object�� Force and form

closure are dual of each other� in the same sense as wrenches and in�nitesimal twists are dual

notions 
Roth� ����� and� as noted in 
Nguyen� ����� Mishra and Silver� ����� for example�

force�closure grasps are form�closure and vice versa�

Let us note that there is unfortunately no general agreement on terminology in the grasp�

ing literature 	see 
Trinkle� ����� Mirtich and Canny� ����� for discussions of this problem
�

for example� Reulaux 
������ Salisbury 
������ Ji 
������ Markensco� et al� 
������ and Trin�

kle 
����� use the expression form closure for what we call force closure� and reserve the

expression force closure for grasps that can only balance certain external loads� Our def�

initions match the ones used by Mishra et al� 
������ Nguyen 
������ and Murray et al�


������

A somewhat weaker notion is equilibrium� de�ned below�

�It should be noted that certain grasps which are not form�closure actually immobilize the grasped object�
for example three frictionless �ngers positioned at the centers of the edges of an equilateral triangle cannot
prevent an in�nitesimal rotation of the triangle about its center of mass� yet prevent any �nite motion� See
�Czyzowicz et al�� �		�
 Mirtich and Canny� �		�
 Rimon and Burdick� �		�a
 Rimon and Burdick� �		�b


and Section � for discussions of this phenomenon�
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De�nition � A system of n wrenches w�� � � � �wn is said to achieve equilibrium when the

convex hull of the points w�� � � � �wn in IR� contains the origin�

In other words� a given system of wrenches achieves equilibrium when the equation

nX
i��

�iwi � � 	�


admits a non�trivial� non�negative solution�

Mishra� Schwartz� and Sharir 
����� have shown that a necessary and su�cient condition

for a system of wrenches to achieve force closure is that the origin of IR� lies in the interior

of the convex hull of the primitive wrenches� In particular� force closure implies equilibrium

but there are wrench systems that achieve equilibrium but not force closure��

��� Grasps and Friction

From now on we restrict our attention to systems of wrenches generated by hard �ngers and

assume Coulomb friction� While soft �ngers can exert both pure forces and pure torques� a

hard �nger can only exert a pure force� The wrench associated with a hard �nger located at

�These systems of wrenches are called strong force closure systems by Trinkle ��		�
� Of course� as noted
before� his notion of force closure is di�erent from ours�
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a point x and exerting a force f is the zero�pitch wrench w � 	f �x� f
T 	here ��� denotes

the operator associating to two vectors the determinant of their coordinates� and x� f is the

moment of the force f with respect to the origin
� Under Coulomb friction� f is constrained

to lie in a friction cone C centered about the internal surface normal at x with half�angle �

	Figure �	a

� The tangent of the angle � is called the friction coe�cient�

A force f in the friction cone is a non�negative combination of primitive unit forces

bounding the cone� in other words it belongs to the wrench set associated with this in�nite

set of wrenches� In the sequel� we will approximate the friction cone by an m�sided pyramid

	typical values of m are three or four
� and the contact forces will be in the wrench set

associated with the �nite set of primitive wrenches corresponding to edges of this pyramid

	Figure �	b

�

A d��nger grasp is de�ned geometrically by the position xi 	i � �� ��� d
 of the �ngers on

the boundary of the object� We can associate with each grasp the wrench system formed

by the primitive wrench systems corresponding to each �nger� This allows us to extend the

notions of force closure and equilibrium to grasps�
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De�nition � A d��nger grasp is said to achieve force closure �resp� equilibrium� when the

corresponding system of primitive wrenches achieves force closure �resp� equilibrium��

Intuitively� a grasp achieves force closure when any external load can be balanced by the

wrenches associated with forces lying in the friction cones at the �ngertips� while a grasp

achieves equilibrium when there exist forces in the friction cones� not all of them being zero�

such that the associated wrenches add to zero��

As noted before� force�closure grasps always achieve equilibrium but equilibrium grasps

are not always force�closure� We now introduce a sub�class of equilibrium grasps that will

be guaranteed to achieve force closure�

De�nition � A d��nger grasp is said to achieve non�marginal equilibrium when there exists

a set of forces in the open friction cones at the �ngertips such that the sum of the associated

wrenches is zero�

In other words� a d��nger grasp achieves non�marginal equilibrium when the equation 	�


associated with the corresponding system of wrenches admits a strictly positive solution�

�Of course� real robot hands can only exert bounded forces� so ideal force�closure grasps are not physically
achievable� We will come back to this problem in Section �� See also �Kirkpatrick et al�� �		�
 Ferrari and
Canny� �		�
 Mirtich and Canny� �		�
 for discussions of related issues�
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Proposition � In the presence of friction	 a su�cient condition for three�dimensional	 d�

�nger force closure with d � � is non�marginal equilibrium�

This proposition is a generalization of Nguyen�s similar result in the two��nger case


Nguyen� ����� Corollary ��� and its constructive proof is given in the appendix 	see 
Ponce

and Faverjon� ����� for the two�dimensional three��nger case
� It should be noted that

Proposition � is not a trivial corollary of the result by Mishra� Schwartz� and Sharir 
�����

stated earlier� given arbitrary primitive wrenches� 	�
 may admit a strictly positive solution

while the interior of the convex hull of the primitive wrenches is empty� For example� if the

primitive wrenches all lie in some hyper�plane� their convex hull will also lie in this hyper�

plane� which has an empty interior in IR�� Proposition � shows that the particular systems

of wrenches associated with d � � friction cones yield wrench sets with non�empty interiors�

A grasp achieving equilibrium with non�zero forces for a given friction coe�cient trivially

achieves non�marginal equilibrium for any strictly greater friction coe�cient� This is an

extremely important point� In particular� the linear conditions for equilibrium under friction

presented in Section ��� will allow us in Section � to derive an e�cient algorithm for planning
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equilibrium and thus force�closure grasps�

��� Line Geometry

As noted earlier� a zero�pitch wrench w � 	f �x � f
 represents a pure force f applied at a

point x and its moment x� f with respect to the origin� its screw coordinates also represent

a straight line� the line of action of the force f passing through x� In this case� the six

screw coordinates 	w�� ��� w�
 of w are called the Pl�ucker coordinates of the line 	note that

screw and Pl�ucker coordinates only coincide for zero�pitch screws
� Zero�pitch screws� or

equivalently straight lines� form a four�dimensional variety in the �ve�dimensional projective

space of all screws� more precisely� they form a quadric surface� called the Grassmannian�

de�ned by w�w� � w�w� � w�w� � ��

Equilibrium implies that the 	screws associated with the
 lines of action of the forces

are linearly dependent� Grassmann geometry characterizes the varieties of various dimen�

sions formed by sets of dependent lines 
Dandurand� ����� Merlet� ������ and it can be

used to characterize equilibrium geometrically� For example� a classical result is that three

linearly�dependent lines form a �at pencil� In other words� a necessary condition for three�
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�nger equilibrium in three dimensions is that the lines of action of the three forces be

coplanar and intersect in a point� This condition is similar to those presented in 
Ji� �����

Ponce et al�� ����b�� and it can be used to synthesize three��nger force�closure grasps of

polyhedral objects� Here� we concentrate on the four��nger case� as illustrated by the fol�

lowing proposition� which is another classical result from Grassmann geometry 
Hunt� �����

Dandurand� ����� Merlet� ������

Theorem � A set of four linearly�dependent lines either lie in a single plane	 intersect in a

single point	 form two 
at pencils having a line in common but lying in di�erent planes	 or

form a regulus �Figure ���

The lines in a regulus lie on a doubly�ruled hyperboloid of one sheet 	Figure �	d

 which is

not necessarily a surface of revolution� A regulus can be de�ned as the set of lines intersecting

a �xed set of three skew lines 	Figure �	e

�

Note that this result is attributed by Ball 
����� pp� �������� p� ���� to M�obius 
�����

p� ���� in the following form� if four forces are in equilibrium they must be generators of

the same hyperboloid� 	The hyperboloids associated with four coplanar or intersecting lines

��



and two pencils lying in di�erent planes and having one line in common are degenerate�


From now on we restrict our attention to non�planar grasps� i�e�� to sets of four contact

forces whose lines of action do not all lie in the same plane� Algorithms for computing planar

three��nger grasps can be found in 
Ji� ����� Ji and Roth� ����� Pollard and Lozano�P�erez�

������

��	 A Necessary and Su
cient Condition for Equilibrium

Equilibrium implies the linear dependence of lines belonging to the double�sided friction

cones� When is the converse true 

Clearly� not every grasp whose contact wrenches are linearly dependent achieves equilib�

rium� think for example of four forces exerted on the four top sides of a pyramid� all pushing

toward the same half�space� with lines of action intersecting in some point� These lines are

linearly dependent� but do not achieve equilibrium�

Another interesting question is� can the three types of linearly�dependent non�coplanar

lines yield equilibrium grasps The answer is yes� as demonstrated graphically by Figure �� If

we choose four contact forces adding to zero and group these forces into pairs whose directions
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lie in two planes� we see that the three types of grasps form a hierarchy characterized by

how the lines of action of the forces do or do not intersect in these planes� in Figure �	a
�

the four lines intersect in a point that lies in both planes� while in Figure �	b
 the two pairs

of lines have been pulled apart� each pair of lines intersecting on the line formed by the

intersection of the two planes� Finally� in the regulus case� the lines in each pair do not

intersect anymore� they have been pulled away from their original plane and now lie parallel

to this plane at a common distance from it 	Figure �	c

�

All three of these grasps achieve equilibrium� since the sum of the forces is zero� it is

su�cient to show that the resulting moment is zero for some particular choice of origin� This

is obvious in the case of Figure �	a
� using the intersection point of the forces as origin� A

simple calculation shows that choosing as origin the mid�point of the segment where the two

planes intersect also yields a zero moment for the examples of Figure �	b
�	c
� Intuitively�

both pairs of forces have a zero moment with respect to that point in the case of Figure �	b
�

while the two pairs have opposite moments in the case of Figure �	c
�

The main result of this section is a necessary and su�cient condition for forces whose
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lines of action are linearly dependent to achieve equilibrium in the case where the contact

points are not all coplanar 	Proposition �
� We will need the following de�nition�

De�nition � We say that a set of vectors positively span IRn when any vector in IRn can be

written as a positive combination of these vectors�

Using this terminology� a grasp achieves force closure when the set of wrenches that

can be exerted by the �ngers positively span IR�� Here we concentrate on conditions that

quadruples of vectors in IR� must satisfy to positively span that space� The following lemma

gives two such conditions�

Lemma � Given four vectors in IR�	 the following statements are equivalent


��� the vectors positively span IR��

��� no three of the vectors are coplanar	 and the zero vector is a strictly positive combination

of the four vectors�

��� no three of the vectors are coplanar	 and the direction opposite to each vector lies in

the interior of the trihedron formed by the other three�
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Note that the trihedron formed by three vectors is the set of positive combinations of these

vectors� The proof of the lemma is immediate� and it is omitted for the sake of conciseness�

The lemma itself is important because it plays a major role in the proof of Proposition �

	below
 and in the statement of Proposition � 	Section ���
� both of which are keys to our

grasp�planning approach�

Proposition � A necessary and su�cient condition for four non�coplanar points to form

an equilibrium grasp with four non�zero contact forces is that

�P�� there exist four lines in the corresponding double�sided friction cones that either in�

tersect in a single point	 form two 
at pencils having a line in common but lying in

di�erent planes	 or form a regulus	 and

�P�� the vectors parallel to these lines and lying in the internal friction cones at the contact

points positively span IR��

The proof of this proposition is given in the appendix�
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��� A Su
cient Condition for Equilibrium

We want conditions for equilibrium that are linear in the unknown grasp parameters 	the

�nger positions and the contact forces
 because this will allow us to use linear programming

as a basis for grasp planning 	see Section �
� The second condition 	P�
 of Proposition � is

de�nitely non�linear� it can be written as

�X
i��

�ifi � �� with �i � � for i � �� � � � � ��

which is a bilinear constraint on the unknown coe�cients �i and contact forces fi�

In this section� we give a su�cient condition for equilibrium� using a condition on the

surface normals which ensures that 	P�
 is satis�ed� Since� for a given choice of four contact

faces� the surface normals are �xed� this replaces the non�linear condition 	P�
 by a simple

test on these normals�

We �rst need a de�nition� As before� � denotes the friction angle�

De�nition � We say that four vectors ��positively span IR� when	 for any triple u��u��u�

��



of these vectors	 the cones C�� C�� C� of half�angle � centered on u�	 u�	 and u� lie in the

interior of the same half�space	 and the cone �C� of half�angle � centered on the direction

opposite to the fourth vector u� lies in the interior of the intersection of the trihedra formed

by all triples of vectors belonging to C�	 C�	 and C� �Figure ���

Clearly� any vector in �C� lies in the interior of the trihedron formed by any vectors in

C�� C�� and C�� and the following proposition is an immediate corollary of Lemma � and

Proposition ��

Proposition � A su�cient condition for four non�coplanar points to form an equilibrium

grasp with four non�zero contact forces is that

�P�� there exist four lines in the corresponding double�sided friction cones that either in�

tersect in a single point	 form two 
at pencils having a line in common but lying in

di�erent planes	 or form a regulus	 and

�P�� the surface normals at the four contact points ��positively span IR��

It should be noted that results similar to Proposition � hold in the three��nger case 
Ji

��



and Roth� ����� Ji� ����� Ponce and Faverjon� ������

The main advantage of Proposition � over Proposition � is that it replaces the condition

	P�
 !which depends on the actual contact forces� directions! by condition 	P�
 !which

depends on the normals to the grasped faces only� This breaks down the computation of

equilibrium grasps into two steps� �rst select faces whose normals satisfy 	P�
� then compute

the grasp con�gurations satisfying 	P�
� In the case of grasps whose contact forces intersect in

a single point 	concurrent grasps
� it will be shown in Section � that 	P�
 can be decomposed

into sixteen elementary conditions 	the common point may lie in the internal or the external

friction cone at each contact point
� each of them being a conjunction of linear constraints�

and this will allow us to use linear programming as a basis for grasp planning�

Proposition � does not yield obvious linear conditions for equilibrium in the case of forces

lying in two �at pencils or in a regulus� Thus we will focus on concurrent grasps in the rest

of this presentation� We will brie�y come back to the general case in Section ��

��



� An E�cient Algorithm for Computing Concurrent

Grasps

In this section� we restrict our attention to concurrent grasps formed by forces whose lines of

action intersect in some point� We assume that the normals to the grasped faces ��positively

span IR� 	this can be tested ahead of time
� and present an algorithm for computing the

maximal regions of the grasp con�guration space that yield force�closure grasps�

We start in Section ��� by deriving the linear constraints that de�ne stable grasp re�

gions in an eleven�dimensional space 	two parameters per �nger plus three extra parameters

de�ning the intersection of the contact forces
� We then present in Section ��� two e�cient

algorithms for eliminating the three extra parameters and projecting the stable regions onto

the actual eight�dimensional grasp con�guration space� We �nally discuss in Section ��� a

simple method� based on linear programming� for computing maximal independent contact

regions 	a notion introduced by Nguyen in the two�dimensional case 
Nguyen� �����
�

Our overall approach is a generalization of the algorithm proposed in 
Ponce and Faverjon�

����� for the two�dimensional� three��nger case to the three�dimensional� four��nger case�

��



The main di�erence is that the dimension of the con�guration space is much higher in the

latter case 	eleven instead of �ve
� This has prompted us to replace the variant of Fourier�s

projection algorithm 
Fourier� ����� used in 
Ponce and Faverjon� ����� by novel and much

more powerful algorithms for projecting a polytope from a high�dimensional space onto a

lower�dimensional sub�space� These are detailed in Section ���� which forms the core of our

algorithm presentation�

��� Linear Constraints

We assume that the faces of the grasped polyhedron are convex� 	This is not a major

restriction since non�convex faces could be triangulated into convex ones� Note that we do

not assume that the polyhedron itself is convex�


Consider four faces F�� F�� F�� F� of the polyhedron� Each face Fi can be de�ned para�

metrically by xi � x�i � aiui � bivi� where 	ui�vi
 is a vector basis of Fi�s plane 	Figure

�
� If Fi is bounded by ni edges� the parameters ai� bi must also satisfy ni linear constraints

fij	ai� bi
 � �� with j � �� ��� ni� expressing the fact that xi must lie within the face Fi�

Let us represent the internal friction cone Ci associated with the face Fi by an m�sided

��



pyramid� whose faces have internal normals nij� with j � �� ��� m� Writing that a point

x� � 	x�� y�� z�
 belongs to Ci yields the following constraints�

�
	x� � x�i � aiui � bivi
 � nij � �� j � �� � � � � m�
fij	ai� bi
 � �� j � �� � � � � ni�

	�


The �m �
P�

i�� ni constraints associated with the four friction cones de�ne a polytope

in IR��� The equilibrium grasps satisfying the hypotheses of Proposition � can be found by

considering in turn all possible combinations of internal and external friction cones at each

contact point� The equations are the same as before except that some of the inequalities

de�ning the friction cones in 	�
 will be reversed� The set of solutions is the union of the

polytopes corresponding to the di�erent combinations�

It is important to realize that linear programming can readily be used to assess whether

a set of linear inequalities such as 	�
 admits a solution and to �nd representative grasp

con�gurations optimizing some linear merit function� This is true even though 	�
 includes

the x�� y�� z� unknowns besides the variables of interest� ai� bi� However� it is convenient to

��



characterize the equilibrium regions in the eight�dimensional grasp con�guration space of the

parameters ai� bi� independently of the variables x�� y�� z�� This amounts to eliminating these

three variables among the constraints 	�
 or� equivalently� to constructing the projection

of the polytope de�ned by 	�
 in a eleven�dimensional space onto the eight�dimensional

con�guration space of the grasp� The projected polytope will itself be de�ned by a new

system of linear constraints 	��
 in the variables ai� bi only� It should be noted that these new

constraints yield a conservative test for equilibrium� hence force closure� More importantly�

we will see in Section � that� while it is theoretically possible to �nd independent grasp

regions without eliminating x�� y� and z�� this is much less e�cient than working directly

with the eight�dimensional equilibrium regions�

��� Projecting Polytopes

We now attack the problem of eliminating the coordinates of x� among the force�closure

constraints� This is equivalent to projecting an eleven�dimensional polytope onto an eight�

dimensional sub�space� We solve this problem with general algorithms for projecting a

d�dimensional polytope onto some 	d�k
�dimensional sub�space� Both d and k are assumed

��



to be �xed in the complexity analysis of these algorithms�

Consider a polytope P � de�ned in the Euclidean space E of dimension d as the intersection

of n half�spaces

Hi � fx � Aix � bi � �g� i � �� � � � � n� 	�


Here Ai � 	Ai�� ��� Aid
 is a �� d real matrix� x � 	x�� � � � � xd

T is the coordinate vector

of a point in E� and bi is a real number� The 	d� �
�faces 	i�e�� the faces of dimension d� ��

or facets
 fi of P lie in the hyper�planes bounding the half�spaces Hi� and� for j � �� ��� d�

the 	d� j
�faces of P lie in the intersection of j of these hyper�planes�

We address the problem of constructing the orthogonal projection Q of P onto a 	d�k
�

dimensional sub�space F of E� This is a classical problem in geometry with applications

in constraint�based languages and spatial reasoning for example 
Huynh et al�� ����� JSC�

������ A solution to this problem can be traced back to Fourier 
������ but Fourier�s method

has a time complexity of O	n�
k


� and its output may contain many redundant hyper�planes


Huynh et al�� ������

Several other approaches are possible� for example� one can construct the vertices of the

��



polytope P by computing the convex hull D of its dual� projecting 	trivially
 the vertices of

D onto F � then constructing Q as the dual of the convex hull of the projected vertices� The

cost of the computation is dominated by the construction of D� which takes time O	nb
d

�
c



Chazelle� ����� Boissonnat et al�� ������ Other algorithms based on convex hull and extreme

point computation have also been proposed by Lassez and Lassez 
����� ������

While each approach is e�ective within certain domains 	e�g� projection through many

dimensions or with dense or redundant polytopes
 there has yet to emerge an algorithmwhich

performs well for all types of inputs� In this section we present two projection algorithms

which have proven to be particularly suitable to our application� where high�dimensional

polytopes are projected through a few dimensions�

Our �rst algorithm is a variation of Fourier�s algorithm which achieves an O	nk	�
 com�

plexity via Gaussian elimination� 	This algorithm was originally introduced in 
Ponce and

Faverjon� ����� but a simpler algorithm� which is a variant of Fourier�s approach� was imple�

mented in that paper�
 The second one is a novel output�sensitive algorithm which tracks

the edges of the apparent contour of the polytope being projected� Its time complexity is

��



O	tn
 time complexity� where t is the size of the projection� We have implemented both

algorithms� and an empirical comparison of their performances is given in Section ��

From now on� we assume without loss of generality that E � IRd and F is de�ned by

xi � � for � � i � k� Before detailing the two algorithms� let us de�ne a few terms 	Figure �
�

We will say that a hyper�plane is vertical when it contains the directions x�� � � � � xk� Vertical

hyper�planes that contain a face of P are called support planes� The corresponding faces

form the apparent contour of P � whose projection� called the silhouette� is the boundary of

Q� Half�spaces bounded by a support plane and containing P are called support half�spaces�

Together� the support half�spaces de�ne a cylindrical polytope C that projects onto Q�

�	�	� An Approach Based on Gaussian Elimination

We �rst present a two�step algorithm based on Gaussian elimination 
Ponce and Faverjon�

������ we �rst eliminate the variables x�� � � � � xk among the n inequalities de�ning P � which

yields a set of candidate support planes and half�spaces� we then discard the redundant half�

spaces through linear programming and construct Q by 	trivially
 projecting the remaining

ones onto F �

��



Geometrically� the �rst step amounts to identifying all potential 	d � k � �
�faces of

the apparent contour� which in turn determines the support planes and half�spaces� 	The

contour may contain higher�dimensional faces� such as the vertical 	d� �
�face in Figure ��

but the 	d� k � �
�faces are su�cient to determine the support planes�


Step �	 In principle� any 	k � �
�tuple of 	d� �
�faces may yield a 	d � k � �
�face of the

apparent contour� The inequalities de�ning the corresponding half�spaces can be written as

�����
����
Ai���x� � � � �� Ai��kxk � Ai��k	�xk	� � � � �� Ai��dxd � bi� � ��
� � �
Aik��x� � � � �� Aik�kxk � Aik�k	�xk	� � � � �� Aik�dxd � bik � ��
Aik����x� � � � �� Aik���kxk � Aik���k	�xk	� � � � �� Aik���dxd � bik�� � ��

We eliminate the variables x�� � � � � xk one by one in k Gaussian elimination steps� It is

very important to remark that� because we deal with inequalities instead of equalities� the

multiplicative coe�cients used during Gaussian elimination must all be positive� In other

words� we can only eliminate the variable x� if there exists some l in f�� � � � � k��g such that�

for all m �� l in f�� � � � � k � �g� we have Ail��Aim�� � � 	intuitively� the normal to one of the

hyper�planes under consideration must face �up� while the others face �down�� see Figure

��



�
� Eliminating x� yields a new system of k inequalities in x�� � � � � xk� After k such steps�

checking each time that one of the coe�cients of the leading variable has a sign di�erent

from all the other ones� we obtain a single linear inequality

A�
k	�xk	� � � � �� A�

dxd � b� � � 	�


in xk	�� � � � � xd only� This inequality de�nes the desired half�space�

Step �	 Some of the half�spaces found in the previous step actually are support half�spaces�

but since we do not know the adjacency relationships between the hyper�planes bounding

P � some other may be redundant 	the hyper�planes bounding them actually lie outside the

polytope� see Figure �
� We compute the signed distance between the original polytope and

each candidate hyper�plane by maximizing 	�
 under the original constraints 	�
 	this is a

linear program
� We then reject the hyper�planes lying at a strictly negative distance from

the polytope�

What is the cost of this algorithm We must consider
�

n

k	�

�
	k��
�tuples of 	d��
�faces�

��



so for a �xed k we have to consider a total of O	nk	�
 tuples� For a �xed dimension� the

cost of the best linear programming algorithms proposed so far is linear in the number of

constraints 
Megiddo� ������ so rejecting redundant faces can be done in O	nk	�
 time�

Note that this algorithm is similar to Fourier�s method 
Fourier� ������ in the latter

algorithm� one variable is �rst eliminated among all possible pairs of inequalities� a second

variable is then eliminated among all pairs of new inequalities� etc��� until k variables have

been eliminated� In contrast� our algorithm directly eliminates k variables among all possible

sets of k�� inequalities� This simple modi�cation allows us to improve the cost of projection

from O	n�
k


 to O	nk	�
� It should also be noted that the projection method implemented

in 
Ponce and Faverjon� ����� is essentially Fourier�s algorithm�

�	�	� A Contour
Tracking Approach

We now propose a novel algorithm that computes the projection Q of P onto F in an

output�sensitive way� We restrict the discussion to the case k � �� The case k � � can be

easily solved using linear programming� We will assume that the hyper�planes Aix� bi � ��

i � �� � � � � n� are in general position� i�e� no 	d � �
�tuples of hyper�planes have a common

��



intersection and no two vertices of P project onto the same vertex of Q� This ensures that

the cone formed by the faces of P incident to each vertex contains a bounded number of

faces and that the size of the set of edges that belong to the apparent contour is linear

in the number of faces of Q� General techniques such as the simulation of simplicity of


Edelsbrunner and M�ucke� ����� can be used to make this hypothesis valid� We will also

assume that P is bounded 	which is clearly the case in our grasping application
� Methods

for dealing with unbounded polytopes are described in 
Lassez and Lassez� ������

The algorithm is again divided into two steps� we �rst use linear programming to �nd an

initial point on the apparent contour� we then track the edges contained in the contour by

shooting rays from the visited vertices� and record for each edge the support plane containing

it as well as the associated support half�space�

Step �	 Any vertex of P that is extremal in some arbitrary direction orthogonal to the

projection directions is guaranteed to lie on the apparent contour� Since P is bounded� such a

vertex exists and can be found through linear programming 	we extremize the corresponding

coordinate under the constraints de�ning P 
� Once the vertex is found� we put it in a stack

��



S� along with the hyper�planes passing through it�

Step �	 We track the edges of the apparent contour by repeating the following steps until

S is empty�

	a
 Take a vertex v out of S and put it in a dictionary Dv of already considered vertices�

Construct the support half�spaces whose boundary contains v and the rays contained

in the cone formed by the hyper�planes bounding P and incident to v�

	b
 Each ray r is considered in turn� If there exists a support plane containing both v and

r� then

	i
 store all such planes and associated support half�spaces in a dictionaryDh 	if they

do not already belong to Dh
�

	ii
 by intersecting r with the constraints de�ning P � compute the vertex w distinct

from v of the edge contained in the ray� If w has not been already considered 	it

does not belong to Dv
� add w 	along with the incident hyper�planes
 to S�

Let us show that the algorithm has an O	tn
 time complexity� where t is the size of Q�

��



As noted before� a linear program de�ned by n constraints in a d�dimensional space can be

solved in O	n
 time for a �xed d 
Megiddo� ������ It follows that �nding the initial vertex

takes O	n
 time� �nding the incident hyper�planes amounts to �nding the constraints that

are zero at the vertex and also takes O	n
 time� so the overall cost of Step � is O	n
�

Step �	a
 only requires constant time� from our general position assumption� each vertex

is incident to exactly d rays� Any d � � hyper�planes potentially de�ne a ray� There are

d such groups of d � � hyper�planes and they can be selected in constant time among the

hyper�planes incident to the vertex and stored with it in the dictionary� Each potential ray

r may or may not actually bound the cone C� We can take advantage of the fact that the

ray r touches the cone at a vertex v to devise a simple test� we compute two ray points lying

on either side of v by intersecting r with two hyper�planes� the ray belongs to the cone C if

and only if one of the two points satis�es the constraints de�ning C� This test also requires

constant time�

At most
�
d��
k	�

�
support planes may contain a given ray and they can be found in constant

time� A ray contains an edge of the apparent contour if and only if it belongs to one of these

��



planes� Conversely� a potential support plane actually supports the apparent contour if and

only if it contains at least one contour ray� All these tests take constant time� Step �	b


requires shooting each ray against all the hyper�planes bounding P � which takes O	n
 time�

Note that the hyper�planes incident to the new vertex are found at no extra cost during ray

shooting� It follows that the combined cost of Steps �	a
 and �	b
 is dominated by the O	n


cost of Step �	b
� Since the loop in Step � is executed O	t
 times� the overall cost of this

step is O	tn
�

In fact� this result can be further improved by preprocessing the hyper�planes Hi so as

to answer the ray�shooting queries in sub�linear time� using a recent result by Matou"sek and

Schwarzkopf 
������ The details of the improved algorithm and its complexity analysis are

omitted here for the sake of conciseness and can be found in 
Ponce et al�� ������ The main

result is the following�

Proposition � ��Ponce et al�
 ������ The projection of a polytope from a Euclidean space

��



E of dimension d onto a 	d�k
�dimensional sub�space F can be computed in time and space

T � O
�
n�	�t�	�

�

where � is any positive constant	 t is the size of Q	 and

	 �
�

� � �

b d
�
c

�

In our case� d � �� so 	 � �
��

��� Finding Independent Contact Regions

We now return to the problem of computing the grasps� After eliminating the variables

x�� y�� z�� we obtain a set of constraints 	��
 de�ning the polytope representing all equilibrium

grasps for each quadruple of faces� Because of the uncertainty in robotics systems� we would

like to minimize the sensitivity of a grasp to positioning errors� A way of achieving this

is to seek quadruples of independent contact regions 	an idea introduced by Nguyen in the

two�dimensional case 
Nguyen� �����
� These regions are such that for any quadruple of

��



contact points chosen in them� the corresponding grasp achieves equilibrium� In the grasp

con�guration space� these regions are represented by parallelepipeds with sides aligned with

coordinate axes and contained in the polytope of equilibrium grasps�

We de�ne the maximal independent contact regions as those maximizing a criterion de�

pending on their size and location� A reasonable criterion is to maximize the minimum of the

lengths of the parallelepiped edges� Like in the three��nger planar case 
Ponce and Faverjon�

������ we have observed empirically that there is not� in general� a unique solution to this

problem� and that� for su�ciently large faces� the size of the contact regions depends only on

the size of the friction cones� In this case� there is an in�nite set of maximal parallelepipeds�

and we add a secondary criterion in order to select a unique solution� we try to center as

well as possible the center of mass of the object in the tetrahedron formed by the contact

points� This enables us to decrease the e�ect of gravitational and inertial forces during the

motion of the robot�

We now show how to map the problem of �nding the maximal independent contact

regions into a linear programming problem� Recall that the position of �nger number i on

��



face Fi is de�ned by two parameters ai and bi 	i � �� ��� �
� A parallelepiped in the grasp

con�guration space can thus be de�ned by four rectangles Ri � 
a�i � a
	
i �� 
b�i � b

	
i �� i � �� ��� ��

which correspond to its projection on the parameter space of each face� Because of convexity�

we only need to verify that the ��� vertices of the parallelepiped are contained in the set of

force�closure grasps !i�e�� satisfy 	��
! in order to guarantee that the entire parallelepiped is

also contained in it�

Let u be the minimum of the lengths of the corresponding intervals� we add to the existing

set of linear constraints the following ones�

���
��
u � ��
u � a	i � a�i � i � �� � � � � ��
u � b	i � b�i �

	�


which express the fact that u is positive and smaller than the length of each interval�

Maximizing the minimum length criterion thus reduces to maximizing u under the con�

straints 	��
 !written ��� times� once for each vertex of the parallelepiped! and 	�
�

The second criterion can also be expressed linearly by introducing an additional variable

��



v measuring the L� distance between the center of mass gp � 	xp� yp� zp
 of the grasped

object and the center of mass gc � 	xc� yc� zc
 of the contacts corresponding to the centers

of the rectangles Ri� By de�nition� v � max	jxc � xpj� jyc � ypj� jzc � zpj
� which yields the

following constraints� ����������
���������

v � xp � xc�
v � xc � xp�
v � yp � yc�
v � yc � yp�
v � zp � zc�
v � zc � zp�

	�


Since gp is �xed and xc� yc� zc depend linearly on the unknowns a�i � a
	
i � b

�
i � b

	
i � these

constraints on v are themselves linear in all the unknowns� Minimizing the distance criterion

amounts to maximizing �v�

In summary� �nding the maximal independent contact regions amounts to solving a linear

program� the constraints are 	��
 !again� written once for each one of the ��� vertices of the

parallelepiped!� 	�
� and 	�
� and the objective function to maximize is a weighted combina�

tion wuu�wvv of the two above criteria 	the weights wu and wv are set a priori by the user�

typically to ��� and ���
� There are �� variables� namely the main variables a�i � a
	
i � b

�
i � b

	
i

	i � �� ��� �
 and the auxiliary variables u and v� We rank the maximal independent contact

regions found for di�erent quadruples of faces by using the output value of the simplex 	i�e��

��



the weighted sum of the criteria after optimization
� For each quadruple of faces� we choose

the centers of the maximal independent contact regions as representative grasps�

It should be noted that the independent contact regions can also be found without pro�

jecting the original polytope� In this case� we use the original inequalities 	�
 instead of those

de�ning the projection� However� we must also add �� ��� variables corresponding to the

values of x� at each vertex of the parallelepiped� The corresponding optimization involves

many more variables than the original one� and is correspondingly much more expensive� As

shown in Section �� this is empirically con�rmed by our experiments�

� Implementation and Results

In this section we describe our implementation and present some results� The implementation

has been entirely written in C� using the simplex routine from Numerical Recipes in C 
Press

et al�� ����� for linear programming� All timings reported in this section have been measured

on a SUN SPARCstation ���

��



��� Projection of Polytopes

Our implementation of the projection algorithms is relatively straightforward� and it can

be used to project arbitrary polytopes from IRd onto IRd�k 	Figure �
� We use hash tables

to store vertices� edges� and planes� and associate with each of these geometric objects the

corresponding numerical information 	e�g�� the position of a vertex
 as well as a binary word

recording the hyper�planes used to generate it� For a polytope de�ned by n constraints� we

use a n�bit word whose ith bit is set if and only if the corresponding object belongs to the

hyper�plane numbered i� This allows us to use bit operations to determine very quickly if

some object has already been considered� without having to worry about confusions due to

numerical imprecision�

Below� we brie�y describe the performance of our two projection methods in the grasp

planning context� The corresponding polytopes are not in general position� in particular�

the edges of the apparent contour often lie in more than ten of the hyper�planes bounding

the original polytope� This causes the apparition of degenerate redundant hyper�planes in

the projection� and we had to re�ne our two projection algorithms to eliminate those�

��



�	�	� The Gaussian Elimination Algorithm

The Gaussian elimination algorithm �nds the hyper�planes bounding the projection by elim�

inating three variables among all sets of four constraints� Even for a simple problem� this

approach is quite expensive� for example the polytope associated with four triangular faces

and the corresponding four�sided friction cones is bounded by only �� constraints� but

�
�


�

�
� ����� combinations have to be checked� We take advantage of the fact that the

hyper�planes which constrain the contact points to lie in each face are vertical� and add

those to the projection from the outset� Furthermore� since combining any non�vertical

planes with a vertical one produces the same vertical plane� we need only consider combina�

tions of non�vertical planes� For the case above� these are just the planes corresponding to

friction�cone constraints� with a total of
�
��

�

�
� ���� combinations to be checked� Beyond

the computational savings� this means that the cost of projection is almost exclusively de�

termined by the number of planes used to approximate the friction cones and not by the

complexity of the faces being grasped� Step � of the original Gaussian elimination algo�

rithm is easily modi�ed to eliminate degenerate support planes that only touch the original

��



polytope along a lower�dimensional face� we maximize 	�
 under the original constraints 	�


minus the constraint under consideration� and reject hyper�planes such that the distance

found is negative or zero�

�	�	� Tracking the Apparent Contour

We have implemented the contour�tracking algorithm as follows� at each successive vertex�

we wish to determine which incident edges belong to the apparent contour� Given a vertex

v� let us denote by Hv the set of hyper�planes incident to v� and by pv the size of Hv� We

�rst �nd a set of vertical hyper�planes containing v� then identify those edges which lie in

at least one of the vertical planes� For each of the
�
pv
�

�
combinations of four hyper�planes in

Hv� we perform Gaussian elimination to �nd the support planes containing v� Then� since

edges are de�ned by d � � hyper�planes� we check each subset of ten hyper�planes in Hv

to see if it contains any of the combinations of four which successfully generated a support

plane� For those sets which do contain a combination� we calculate the direction of the

edge and check whether it intersects the polytope in another vertex� If so� the edge�vertex

information is stored for further exploration 	and to prevent duplication
� and the support

��



planes generated by the combinations associated with the edge are output� Though this

procedure may seem circuitous� it can be implemented quite e�ciently using our binary

word representation to determine which objects have already been examined and whether a

combination is included in a particular vertex or edge� Another advantage of this algorithm

is that the support hyper�planes are generated as part of the exploration process� There is

no need for a post�processing step to build the support planes from the projected vertices

and edges�

For generic polytopes� the contour�tracking algorithm does not yield any redundant ver�

tical hyper�plane� However� in the context of grasp planning� there may be vertical hyper�

planes touching the original polytope along a lower�dimensional face� We take advantage

of the vertex information to eliminate these redundant hyper�planes more e�ciently than

through linear programming� we project the vertices� then check each support plane to see

how many dimensions are spanned by the vertices it contains� Any hyper�plane whose ver�

tices span less than seven dimensions cannot yield a facet of the silhouette polytope� and

thus can be rejected as redundant�

��



Cost of Projection for a Typical Grasp Polytope
Gaussian Elimination Method

Planes in Planes in Combinations Output Final Projection Total
Cone Polytope Checked Size Size Time Time
� �� ��� �� �� � ��
� �� ���� ��� ��� � ��
� �� ���� ��� ��� � ��
� �� ����� ��� ��� �� ���
� �� ����� ��� ��� �� ����
� �� ����� ���� ��� �� ����

Table �� Number of hyper�planes involved at each step of the projection process� as well
as the time 	in seconds
 for the Gaussian elimination method� The object grasped is a
tetrahedron with m�sided friction cones� with m varying from � to ��

�	�	� Results

To illustrate the relative performances of the Gaussian elimination and contour�tracking

methods in the context of grasp planning� we have tested them on the polytope associated

with the problem of grasping a tetrahedron with m�sided friction cones� Figure �� shows

the run times for values of m ranging from � to �� corresponding to polytopes de�ned by

�� to �� constraints� As expected� the contour�tracking method outperforms the Gaussian

elimination method� Tables � and � give a quantitative comparison of the two algorithms�

As shown by Table �� the elimination of redundant planes is by far the most expensive part

of the Gaussian elimination method�

��



Cost of Projection for a Typical Grasp Polytope
Contour�Tracking Method

Planes in Polytope Combinations Vertices Edges Output Final Projection Total
Cone Size Checked Found Found Size Size Time Time
� �� ��� ��� ���� �� �� � �
� �� ���� ��� ���� ��� ��� � �
� �� ���� ��� ���� ��� ��� �� ��
� �� ���� ���� ���� ��� ��� �� ��
� �� ���� ���� ����� ��� ��� �� ��
� �� ����� ���� ����� ���� ��� ��� ���

Table �� Results for the contour�tracking projection method� The data is the same as before�

��� Finding Maximal Grasp Regions

As noted earlier� we could in principle �nd the maximal grasp regions without the projection

step� In practice� the corresponding linear program involves more than ��� variables and

thousands of constraints� and it simply never ran to completion !we interrupted it after a

few hours! most likely due to the very large number of constraints and variables involved�

In contrast� the linear program used to compute maximal independent regions from the

projected polytope only involves �� variables� and as shown below runs in seconds�

As discussed earlier� �nding the maximal independent grasp regions amounts to inscribing

an �D box into the silhouette polytope� the shortest edge of which should be as long as

possible� The box itself may be de�ned as a set of intervals for the face coordinates 
a�i � a
	
i ��

��



Size of Grasp�Region Polytope
Planes in Planes in Silhouette Final Convex Time to

Friction Cone Convex Size Size Solve 	sec

� �� �� ���� ��
� �� ��� ���� ��
� �� ��� ����� ����
� �� ��� ����� ����

Table �� Sizes of a typical polytope used to �nd maximal grasp regions�


b�i � b
	
i �� i � �� ��� �� Because of convexity� the entire box will be contained in the polytope

if each of the ��� vertices are valid grasps� our new polytope will consist of versions of

the silhouette constraints for each of the ��� combinations of interval endpoints� However�

since most of the constraints do not involve all of the face variables� we do not end up with

��� times the number of constraints in the silhouette� Table � shows how the size of the

polytope varies for the tetrahedron with di�erent friction cone approximations� Finding

the maximal box thus amounts to solving a linear program with �� variables� and for the

tetrahedron problem with four�sided friction cones� this takes approximately �� seconds on

a SPARCstation ���

It is clear that the size of the �nal polytope� and thus the cost of solving the problem�

increases quickly with the number of planes in the friction cone approximation� Aligning

��



the sides of the friction cones with the coordinate axes of the grasped object�s faces yields

constraints which do not involve all variables� and this has the advantage of minimizing

the total number of constraints bounding the grasp polytope� This alignment procedure is

particularly e�cient for friction cones with an even number of sides� as demonstrated by

Table �� the �nal polytope associated with ��sided friction cones has the same size as the

polytope associated with ��sided cones� and the polyope associated with ��sided cones is

actually smaller than the polytope associated with ��sided ones�

To illustrate the output of our algorithms� Figure �� shows the �ve grasps found for a

tetrahedron� It should be noted that the focus point of the forces belongs to the intersection

of all internal cones in only one of these grasps 	the top one
� For each other grasp� the focus

point belongs to one external cone and three internal ones� Of course� the forces themselves

lie in the internal cones� Figure �� shows some of the grasps found for an ���face polyhedron�

��



� Discussion and Future Work

We have presented a geometric characterization of four��nger equilibrium and force�closure

grasps� given algorithms for computing maximal concurrent grasps of polyhedral objects� and

demonstrated e�cient implementations of these algorithms� Let us conclude by discussing

some of the issues raised by our work and by sketching some future research directions�

Even though Propositions � and � hold for all types of non�planar four��nger grasps�

we have restricted our attention in the second half of the paper to forces whose lines of

action all pass through some point� It is clearly important to generalize our approach to the

other types of four��nger grasps� Grasps involving forces that lie in two �at pencils having

a line in common may prove particularly important in practice� for example for grasping an

elongated object with two cooperating robots equipped with simple two��nger grippers� We

have recently developed a method using the intersection of inverted friction cones with the

contact faces to compute this type of grasps the direction of the line common to the two

pencils is constrained to lie in a prescribed cylinder 
Sudsang� ������ and Figure �� shows an

example� This is only a �rst step� as mentioned in Section �� the equations that characterize

��



equilibrium for these more general grasps are normally non�linear� and new methods will

have to be developed�

So far� we have computed grasps that were optimal according to a criterion based on size of

the independent grasp regions and how well the center of mass of the object is centered among

the contact points� It would also be interesting to compute grasps that are optimal according

to some functional consideration 
Li and Sastry� ����� Markensco� and Papadimitriou� �����

Kirkpatrick et al�� ����� Ferrari and Canny� ����� Mirtich and Canny� ������ for example�

given a �xed set of contact points and some bound on the magnitude of the contact forces�

Ferarri and Canny 
����� propose to compute a maximal ball centered at the origin and

contained in the convex formed by the contact wrenches� clearly� the contact forces can

generate any wrench contained in this ball� and its radius provides a measure of the grasp�s

e�ciency� Computing a grasp con�guration which is optimal according to this criterion is

more challenging� it is a non�linear problem since the moment of the forces depends bilinearly

on the �nger positions and the force directions� We have recently implemented an iterative

approach to this non�linear optimization problem 
Sudsang� ����� 	see 
Mirtich and Canny�

��



����� for a di�erent method
�

In this paper we have restricted our attention to point contact with friction� In the

frictionless case� it is known that four �ngers in the plane and seven �ngers in the three�

dimensional case are necessary and� under very general assumptions� su�cient to achieve

force or form closure 
Lakshminarayana� ����� Mishra et al�� ����� Markensco� et al�� ������

However� as noted in Section �� certain grasps which do not achieve force or form closure

actually immobilize the grasped object� Czyzowicz� Stojmenovic and Urrutia have recently

shown that three �ngers in the plane and four �ngers in the three�dimensional case are

su�cient to immobilize a polyhedron� with �nger arrangements corresponding to concurrent

grasps 
Czyzowicz et al�� ������ New techniques developed by Rimon and Burdick 
����a�

����b� may allow us to decide whether the other two types of equilibrium grasps studied in

this paper can also be used to immobilize an object in the absence of friction� More generally�

it would be interesting to evaluate the quality of frictionless grasps achieved by a number of

�ngers between four and seven� with applications to �xture planning�

At the other end of the spectrum� we also plan to explore the case of soft �ngers that

��



can exert pure torques in addition to pure forces� a more di�cult setting in which general

screw theory still applies� but Grassmann geometry does not�

Finally� we plan to investigate other applications 
Lassez and Lassez� ����� of the contour�

tracking projection algorithm� Taking full advantage of its potential e�ciency will require

using a linear�time routine for linear programming 
Megiddo� ����� as well as implementing

the preprocessing step of the projection algorithm�

��



Appendix

In this appendix we give the proofs of all of the propositions� We �rst prove Proposition ��

See 
Markensco� et al�� ����� for a related argument�

Proposition � In the presence of friction	 a su�cient condition for three�dimensional	 d�

�nger force closure with d � � is non�marginal equilibrium�

Proof � We �rst prove the three��nger case� then prove the d��nger case� with d � �� as a

simple extension� We assume that at least three of the contact points are not collinear�

The key remark is that� if a force fi lies in an open friction cone� then there exists some

�i � � such that� for any vector vi in the open ball of radius �i� fi�vi also lies in the friction

cone� Equivalently� for any vector vi� there exists �i � jvij
�i � � such that� for any � � �i�

�fi � vi lies in the friction cone� Given some external load on the grasped object� this will

allow us to replace the equilibrium forces fi by new forces f �i that lie in the friction cones and

balance this load�

Suppose that we exert a 	not necessarily zero�pitch
 external wrench w � 	f �m
 on the

��



object� We want to �nd a set of forces f ��� f
�
�� f

�
� lying in the friction cones and balancing this

wrench� i�e�� ������
�����
f �

�X
i��

f �i � ��

m�
�X

i��

xi � f �i � ��

Since the three points x��x��x� are not collinear� we can choose the origin outside of the

plane formed by these points� It follows that the vectors xi are linearly independent and the

vectors xi � xi	� are also independent� Let us denote by 	��� ��� ��
 the coordinates of the

vector �x� � f �m in the coordinate system 	x� � x��x� � x��x� � x�
�

Consider the vectors v� � ��x� � ��x� � f � v� � ��x� � ��x�� and v� � ��x� � ��x��

Suppose we apply the force f �i � �fi � vi in xi� for i � �� �� �� with � � max	�i
� and �i

chosen so that �ifi � vi lies in the friction cone at that point� Clearly� the resultant of the

forces f �i is �f � and their total moment is �m� which completes the proof�

The d��nger case 	d � �
 can be treated similarly� we use the d forces fi� with i � �� ��� d to

achieve equilibrium� and construct additional forces vij� with j � �� �� � in the three friction

cones of three non�collinear contact points xij to balance the external force and moment� �

We now prove Proposition ��

��



Proposition � A necessary and su�cient condition for four non�coplanar points to form

an equilibrium grasp with four non�zero contact forces is that

�P�� there exist four lines in the corresponding double�sided friction cones that either in�

tersect in a single point	 form two 
at pencils having a line in common but lying in

di�erent planes	 or form a regulus	 and

�P�� the vectors parallel to these lines and lying in the internal friction cones at the contact

points positively span IR��

Proof � The condition is clearly necessary� since the equilibrium forces are non�zero� their

lines of action are well de�ned� and they lie in the double�sided cones� In addition� since the

sum of the corresponding wrenches is zero� the equilibrium forces are linearly dependent�

but since the contact points are not coplanar� these forces are not coplanar either� and they

satisfy 	P�
� Since the forces lie in the internal friction cones and add up to a zero resultant

force� they positively span IR� and satisfy 	P�
�

The condition is also su�cient� Let us assume the existence of lines #i 	i � �� ��� �


satisfying 	P�
 and 	P�
� Since these lines satisfy 	P�
� some linear combination of the

��



associated wrenches is zero� In particular� if we denote by xi 	i � �� ��� �
 the contact

points and by ui 	i � �� ��� �
 the vectors satisfying 	P�
� there exist coe�cients �i such that

P�
i�� �iui � �� Because the vectors ui positively span IR�� no three of them can be coplanar�

and this implies that none of the coe�cients �i is zero� We can therefore set �� � � without

loss of generality� Since the vectors ui positively span IR�� we can also write u� � �
P�

i�� �
�
iui�

where the coe�cients ��i are strictly positive� In turn� this implies that
P

�
i��	�i � ��i
ui � ��

hence �i � ��i for i � �� ��� �� so the coe�cients �i are strictly positive� and the grasp formed

by the four contact points exerting the non�zero forces �iui achieves equilibrium� �
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