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Abstract

This paper addresses the problem of grasping and manipulating three�dimensional objects
with a recon�gurable gripper that consists of two parallel plates whose distance can be adjusted
by a computer�controlled actuator� The bottom plate is a bare plane� and the top plate carries
a rectangular grid of actuated pins that can translate in discrete increments under computer
control� We propose to use this gripper to immobilize objects through frictionless contacts
with three of the pins and the bottom plate� and to manipulate an object within a grasp by
planning the sequence of pin con�gurations that will bring this object to a desired position and
orientation� A detailed analysis of the problem geometry in con�guration space is used to devise
simple and e�cient algorithms for grasp and manipulation planning� The proposed approach
has been implemented and preliminary simulation experiments are discussed�

� Introduction

Classical parallel�jaw grippers are unable to adapt to a wide variety of workpiece geometries� al�
though dextrous hands have been proposed by the academic robotics community ���� �	
� they
are too expensive and cumbersome for typical manufacturing applications� Thus di�erent grippers
are used for di�erent parts hundreds of di�erent models are indeed listed by gripper manufactur�
ers�� This calls for the design of recon�gurable grippers which combine the �exibility of dextrous
hands with the cost�e�ectiveness and simplicity of parallel�jaw grippers� and for the development
of accompanying software to recon�gure these grippers according to part geometry�

We address in this article the problem of grasping and manipulating three�dimensional poly�
hedral objects using a new recon�gurable gripper� currently under construction at the University
of Illinois ���� ��
� The gripper consists of two parallel plates whose distance can be adjusted by
a computer�controlled actuator Figure ��� The bottom plate is a bare plane� and the top plate
carries a rectangular grid of actuated pins that can translate in discrete increments under computer
control�

We propose to use this gripper to immobilize objects through frictionless contacts with three
of the pins and the bottom plate� and to manipulate an object within a grasp by planning the
sequence of pin con�gurations that will bring this object to a desired position and orientation�

Our approach is based on the notion of second�order immobility introduced by Rimon and
Burdick ���
 and on a detailed analysis of the geometry of the joint object�gripper con�guration
space� Characterizing the range of possible object motions associated with a grasp con�guration
allows us to identify the �minimal� con�gurations for which the object is totally immobilized as
well as the �maximal� ones for which there is a non�empty open set of object motions within the
grasp� but no escape path to in�nity�
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Figure �� A recon�gurable gripper� a� conceptual design and b� actual prototype� To simulate the
absence of friction� the bottom plate is mounted on three low�friction translational and rotational
stages� This is reminiscent of Goldberg�s sliding�jaw gripper ���
�

The minimal con�gurations are the basis for grasping� and the maximal ones are the basis
for in�hand manipulation� In addition� our analysis decouples the continuous and discrete degrees
of freedom of the gripper� which allows us to devise e�cient algorithms for grasp and manipula�
tion planning� We have implemented the proposed approach and present preliminary simulation
experiments�

��� Related Work

When a hand holds an object at rest� the forces and moments exerted by the �ngers should balance
each other so as not to disturb the position of this object� We say that such a grasp achieves equilib�
rium� For the hand to hold the object securely� it should also be capable of preventing any motion
due to external forces and torques� Since screw theory ��� ��� ��
 can be used to represented both
displacements twists� and forces and moments wrenches�� it is an appropriate tool for analyzing
and synthesizing grasps� Indeed� it is known that six independent contact wrenches are necessary to
prevent any in�nitesimal displacement which maintains contact� and that a seventh one is required
to ensure that contact cannot be broken ���� ��
� Such a grasp prevents any in�nitesimal motion of
the object� and it is said to achieve form closure ���� ��� �	
� A system of wrenches is said to achieve
force closure when it can balance any external force and torque� Like wrenches and in�nitesimal
twists ���
� force and form closure are dual notions and� as noted in ���� ��
 for example� force
closure implies form closure and vice versa�

The notions of form and force closure are the traditional theoretical basis for grasp planning
algorithms� Mishra� Schwartz� and Sharir ���
 have proposed linear�time algorithms for computing
a �nger con�guration achieving force closure for frictionless polyhedral objects� Markensco� and
Papadimitriou ���
 and Mirtich and Canny ��	
 have proposed algorithms for planning grasps which
are optimal according to various criteria ���
� In each of these works� the grasp�planning algorithm
outputs a single grasp for a given set of contact faces� Assuming Coulomb friction ���
� Nguyen
has proposed instead a geometric method for computing maximal independent two��nger grasps
of polygons� i�e�� segments of the polygonal boundary where the two �ngers can be positioned
independently while maintaining force closure� requiring as little positional accuracy from the robot
as possible� This approach has been generalized to handle various numbers of �ngers and di�erent
object geometries in ��� �� ��� ��� �	� ��
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Robotic grasping and �xture planning are related problems in both cases� the object grasped
of �xtured must� after all� be held securely�� but their functional requirements are not the same�
as remarked by Chou� Chandru� and Barash ��
� machining a part requires much better positional
accuracy than simply picking it up� and the range of forces exerted on the parts are very di�erent�
The role of friction forces is also di�erent� in the grasping context� where �ngers are often covered
with rubber or other soft materials� friction e�ects can be used to lower the number of �ngers
required to achieve form closure from seven to four� in the �xturing context� on the other hand�
it is customary to assume frictionless contact� partly due to the large magnitude and inherent
dynamic nature of the forces involved ��
 see� however ���
 for an approach to �xture planning
with friction�� Finally� the kinematic constraints on the positions of the contacts are also quite
di�erent� in particular� dextrous grippers have continuous degrees of freedom� corresponding to the
various �nger joints� while modular �xtures have mostly discrete degrees of freedom� corresponding
for example to the position of pins on an integer grid attached to a �xturing plate�

As noted by Wallack ���
� there has recently been a renewed interest in the academic robotics
community for manufacturing problems in general and �xturing in particular� Mishra has studied
the problem of designing �xtures for rectilinear parts using toe clamps attached to a regular grid�
and proven the existence of �xtures using six clamps ���
 this result has since then been tightened to
four clamps by Zhuang� Goldberg� and Wong ���
�� In keeping with the idea of Reduced Intricacy

Sensing and Control �RISC� robotics of Canny and Goldberg ��
� Wallack and Canny ���� ��

and Brost and Goldberg ��
 have recently proposed very simple modular �xturing devices and
e�cient algorithms for constructing form�closure �xtures of two�dimensional polygonal and curved
objects� Brost and Peters ��
 have extended this approach to prismatic three�dimensional objects�
and Wagner� Zhuang� and Goldberg ���
 have proposed a three�dimensional seven�contact �xturing
device and an algorithm for planning form�closure �xtures of a polyhedron with pre�speci�ed pose�

Recently� Rimon and Burdick have introduced the notion of second�order immobility ���� ��� ��

and shown that certain equilibrium grasps or �xtures� of a part which do not achieve form closure
e�ectively prevent any �nite motion of this part through curvature e�ects in con�guration space�
They have given operational conditions for immobilization and proven the dynamic stability of
immobilizing grasps under various deformation models ���
� An additional advantage of their
theory is that second�order immobilization can be achieved with fewer �ngers four contacts for
convex �ngers� than form closure seven contacts ���� ��
��

In ���� ��
� we introduced a new approach to modular �xture planning� based on the notion of
second�order immobility� We proposed to bridge the gap between �xture and grasp planning by
considering a new class of recon�gurable grippers with mostly discrete degrees of freedom� which
have the potential of achieving the same level of �exibility as dextrous robotic hands for a fraction
of the cost� We also gave an algorithm for grasp planning and reported preliminary results� In
this paper� we improve the grasp planning algorithm of ���� ��
 and introduce a new approach to
in�hand manipulation� This approach is related to a number of sensorless pushing and squeezing
manipulation algorithms ��� ��� ��� ��� ��� ��� ��
� and it is based on an explicit con�guration space
characterization of the possible range of motions of the manipulated part as contact occurs�

��� Second�Order Immobility

Let us consider a rigid object and the contacts between d pins and this object� We assume fric�
tionless hard��nger contacts� so each pin exerts a pure force on the grasped object at the point of
contact� The force f exerted at the point p and its moment can be represented by the zero�pitch
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where ��� denotes the operator that associates to two vectors their cross�product�
Let us denote by pi i � �� ��� d� the positions of the contacts in a coordinate frame attached to

the object� and by ni i � �� ��� d� the unit inward normals to the corresponding faces� Equilibrium
is achieved when the contact wrenches balance each other� i�e��

dX
i��

�i

�
ni

pi � ni

�
� �� ��

for some �i � � i � �� ��� d� with
Pd

i�� �i � � note that the value of a wrench depends on the
choice of origin� but that the condition for equilibrium does not�� Equilibrium is a necessary� but
not su�cient� condition for force and form closure�

Czyzowicz� Stojmenovic and Urrutia have recently shown that three contacts in the plane and
four contacts in the three�dimensional case are su�cient to immobilize i�e�� prevent any �nite
motion of� a polyhedron ���
� Rimon and Burdick have formalized the notion of immobilizing
grasps and �xtures in terms of isolated points of the free con�guration space ���� ��� ��
 see also
related work by Mirtich and Canny ��	
�� They have shown that equilibrium �xtures that do
not achieve form closure may still immobilize an object through second�order curvature� e�ects
in con�guration space� a su�cient condition for immobility is that the relative curvature form

associated with an essential equilibrium grasp or �xture be negative de�nite essential equilibrium
is achieved when the coe�cients �i in �� are uniquely de�ned and strictly positive���
�� The
relative curvature form can be computed in terms of the contact positions as well as the surface
normals and curvatures of the body and pins at the contacts�

In the case of equilibrium contacts between pins with a spherical tip and polyhedra� it is easily
shown ���
 that the symmetric matrix associated with the relative curvature form is

K �
dX

i��

�if�ni�

T �pi�
�

S � ri�ni�

T �ni�
g� ��

where ri denotes the pin�s radius� the weights �i are the equilibrium weights of ��� and� by de�ni�
tion� AS � �

�
A�AT ��

Given an object�gripper equilibrium con�guration� we can thus test whether the gripper will
immobilize the object that it holds by computing the matrix K and checking whether it is negative
de�nite� Note again that Rimon�s and Burdick�s condition is only su�cient for immobility� so an
object failing this test may be immobilized due to third� or higher�order e�ects�

In grasping applications� stability is often as important as immobility� a part is said to be in
stable equilibrium if it returns to its equilibrium position after having been subjected to a small
displacement� Stability is very important in real mechanical systems which cannot be expected to
have perfect accuracy� Nguyen has shown that force or form� closure implies stability ���
� but
Donoghue� Howard and Kumar have shown that there exist stable grasps or �xtures which do not
achieve form closure ���� �	
� Rimon and Burdick have proven the dynamic stability of second�
order immobilizing grasps under various deformation models ���
� Thus we can be con�dent that
a planned immobilizing grasp can successfully be executed even in the presence of small unknown
object displacements� As shown in Section �� it is in fact possible to characterize the set of �nite
displacements that a part may undergo without compromising a successful grasping operation� This
will be the basis for the in�hand manipulation technique presented in that section�
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� Grasp Planning

We address the problem of grasping a three�dimensional polyhedral object with the recon�gurable
gripper shown in Figure �� We derive geometric conditions for contact� equilibrium� and immobility�
We then use these conditions in a simple and e�cient algorithm for enumerating all immobilizing
grasps of a polyhedral object�

��� Geometry of the Problem

Our gripper can be used to hold a polyhedral object through contacts with three of the top plate
pins� and either a face� an edge�and�vertex� or a three�vertex contact with the bottom plate� Let
us assume for the sake of simplicity that the faces of the polyhedron are convex note that we do
not assume that the polyhedron itself is convex�� Any wrench exerted at a contact point between
a face and the bottom plate can be written as a positive combination of wrenches at the vertices�
Likewise� the wrenches corresponding to an edge�and�vertex contact are positive combinations of
wrenches exerted at the end�points of the line segment and at the vertex�

We detail the case of a contact between the bottom plate and a triangular face f with inward
unit normal n and vertices vi i � �� �� �� and denote by fi i � �� �� �� the remaining faces� with
inward unit normals ni Figure ��� We assume that f is triangular for technical reasons that will
become clear in Section ������ As will be shown in Section �� our approach can in fact handle
arbitrary convex polygons� but this requires the �ner geometric analysis presented in that section�
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Figure �� The four faces involved in a grasp�

We also assume without loss of generality that the four vectors n and ni i � �� �� �� positively

span IR�� i�e�� that a strictly positive linear combination of these vectors is equal to zero this is
a necessary condition for essential equilibrium�� Finally� given the physical layout of our gripper�
contact between the upper�jaw pins and faces such that n � ni � � is of course impossible� and we
further assume without loss of generality that n � ni � � for i � �� �� ��

Under these assumptions� we can choose a coordinate system u� v� w� attached to the object
with w axis parallel to n� and write in this coordinate system

n �

�
� �
�
�

�
A and ni �

�

li

�
� ai

bi
��

�
A � where li �

q
� � a�i � b�i �

Likewise� since the vectors n and ni i � �� �� �� positively span IR�� we can write n �
�P�

i�� �ini� where �i � � for i � �� �� �� To complete the speci�cation of the faces fi i � �� �� ���
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we will denote by ci the height of fi at the origin� so the plane of this face can be parameterized by
wi � aiui � bivi � ci� Finally� since the faces fi are convex� we will express the fact that the point
associated with the parameters ui� vi actually belongs to fi by linear inequalities on ui� vi�

aijui � bijvi � cij � �� j � �� ��� ki� ��

where ki is the number of edges bounding fi�

����� Contact

We reduce the problem of achieving contact between a spherical pin and a plane to the problem
of achieving point contact with a plane� This is done without loss of generality by growing the
object to be �xtured by the pin radius and shrinking the spherical end of the pin into its center
see ��� ��� ��
 for a similar approach in the two�dimensional case�� We attach a coordinate system
q� r� w� to the gripper� and denote by R and t the rotation of angle � about n and the translation
x� y� in the plane orthogonal to n that map the q� r� w� coordinate system onto the u� v� w�
coordinate system�

If pi and qi denote respectively the positions of the tip of pin number i in the object�s and
gripper�s coordinate frames� we can write

pi �

�
� ui

vi
aiui � bivi � ci

�
A � qi �

�
� qi

ri
	 � hi

�
A and qi � Rpi � t� ��

where qi� ri and hi denote respectively the integer pin position on the bottom plate grid and its
height� and 	 is the jaw separation�

Equation �� is a condition for contact between pin number i and the corresponding face� It
can be rewritten as Cix� y� �� 	� � �� where

Cix� y� �� 	� def
� x� qi� cos� � 
i� � y � ri� sin� � 
i� � di	 � ei � �� ��

and 
i � Argai� bi� and di � ��
q
a�i � b�i � and ei � dici � hi��

� Note that 
i is simply the angle

between the u axis and the projection of ni onto the u� v plane Figure ���
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Figure �� Contact between a pin and a face�

�Here� abusing the usual mathematical notation� Arg�c� s� is the angle a such that cos�a� � c�
p
c� � s� and

sin�a� � s�
p
c� � s��
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The three pins will be in contact with the corresponding faces when �� is satis�ed for i � �� �� ��
In particular� any linear combination

P
�

i�� �iCix� y� �� 	� of the contact constraints will also be
equal to zero� In particular� if we choose �i � �i�dili�� we can use the relation n � �P�

i�� �ini

to eliminate the variables x and y� We obtain

E	� �� def
�

�X
i��

�i

dili
Cix� y� �� 	� � 	 �A cos� � 
��B� ��

where �����
���	

A �
p
C� � S�� 
 � ArgC�S�� B �

P
�

i��

�i
li
ci � hi��

C �
P

�
i��

�i
li
aiqi � biri�� and S �

P
�
i��

�i
li
�biqi � airi��

Note that the notation E�� 	� is justi�ed by the fact that the value of E is independent of x and
y� More importantly� it is now clear that a necessary condition for the existence of an object position
achieving contact with the three pins is that the point �� 	� lies on the contact sinusoid de�ned by
E	� �� � �� This condition is also su�cient� for given values of � and 	 on this sinusoid� the three
linear equations Cix� y� �� 	� i � �� �� �� in the two unknowns x and y are linearly dependent� and
thus admit a common solution�

����� Equilibrium

The equilibrium equation �� expresses both force and moment equilibrium� Using �� and exploit�
ing the fact that the overall scale of the wrenches is irrelevant allows us to rewrite the moment
equilibrium equation as

�X
i��

�ivi�n��
�X

i��

�i�R��qi� t���ni
 � �� with �������� � � and ��� ��� �� � �� 	�

In this case� the force equilibrium equation is simply the relation n � �P�

i�� �ini established
earlier� Using this relation and writing the dot product of the contact moments and n in the
u� v� w� coordinate system yields

�X
i��

�i

li
��biqi � airi� cos � � aiqi � biri� sin �
 � ��� sin� � 
� � ��

It follows that a necessary condition for three pins in contact with the corresponding faces of
the object to achieve equilibrium is that � � 
 or � � 
 � � Note that these values of � are
independent of the heights of the pins� which will prove extremely important in the grasp planning
algorithm presented in Section ����

The above condition is only necessary� However� for a given object�gripper con�guration i�e��
assuming that the pin positions and heights� the jaw separation� and the object position and
orientation are known�� we can compute the coe�cients �i from the equation ��� ����� � � and
the two components of the moment equilibrium equation along the u� v axes� If these coe�cients
are positive� then the grasp will achieve equilibrium�

Note that we could have used the same line of reasoning if f had been an arbitrary convex
polyhedron with k � � edges� In this case however� the coe�cients �i i � �� ��� k� are not uniquely
determined by 	�� which contradicts the notion of essential equilibrium required by Rimon�s and

	



Burdick�s second�order mobility theory� This is our reason for assuming that f is triangular in this
section� Note however� that non�essential� equilibrium can still be tested in this case using linear
programming to determine whether the constraints 	� admit a solution� In addition� the re�ned
geometric analysis of Section � will show that essential equilibrium is not necessary for immobility
in the case of our gripper� which will allow us to abandon the triangular face assumption�

����� Immobility

We now examine the su�cient condition for immobility �� in the case of our gripper� Since the radii
corresponding to the planar contacts are e�ectively in�nite� it is obvious that �TK� is negative
for any vector � which is not parallel to n� Thus we must determine the sign of

nTKn �M
�X

i��

�i�ni � n� � P i �n�� rjni � nj�
� ��

where r is the common radius of the pins and M � ����
P

�

i�� �i� is a scale factor used to balance
the fact that we have chosen �������� � � in our formulation of equilibrium� Note that we have
used P i instead of pi to denote the position of the contact point because �� and �� are valid in the
coordinate system of the original object� as noted earlier� we assume in the rest of this paper that
the object has been grown by the pin radius� while the spherical end of the pin has been shrunk
into its center� This implies that P i � pi � rni� In turn� using �� allows us to rewrite �� as

nTKn �M
�X

i��

�ini � n� � �R��qi � t��� n
�

or equivalently

nTKn �M
�X

i��

�i

li
�aiqi � biri� cos � � �biqi � airi� sin �
 � AM cos� � 
��

and it follows that K is negative de�nite if and only if � � 
� �

����� Main Results

We can now summarize the results obtained in this section with the following lemma�

Lemma �� For given integer pin positions and heights qi� ri and hi i � �� �� ��� a su�cient
condition for an object at con�guration x�� y�� ��� to be immobilized by a grasp with jaw separation
	� is that�

�� �� � 
� �

�� Cix�� y�� ��� 	�� � � for i � �� �� ��

�� if R� denotes the rotation of angle �� about n� and t� denotes the translation x�� y��� the
points R�qi � t�� satisfy the inequalities �� for i � �� �� �� and

�� the constraints 	� on the coe�cients �i i � �� �� �� admit a positive solution�

This lemma is an obvious corollary of the results obtained in Sections ������ ����� and ������ the
third condition simply expressing the fact that the contacts must occur within the faces�
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��� Algorithm

According to Lemma �� all continuous degrees of freedom of a grasp object orientation� jaw sep�
aration and object position� can be computed once the grasp�s discrete degrees of freedom pin
positions and heights� have been set� This yields the following naive algorithm for grasp planning�
for each quadruple of faces� enumerate all grid positions and heights of the three pins� then compute
the remaining grasp parameters and check whether they satisfy conditions �� and �� of Lemma
�� The complexity of this algorithm is obviously ON�D��� where N is the number of faces of
the grasped polyhedron� and D is its diameter measured in units equal to the distance between
successive grid points�

A better approach is the following algorithm� which has the same overall structure as the naive
one� but limits the number of faces and gripper con�gurations under consideration by exploiting a
number of geometric constraints� most notably the fact that the orientation of an object held in an
immobilizing grasp depends only on the pins� positions and not on their heights�

For each quadruple of faces do

�� Test whether they can be held in equilibrium�

�� Enumerate all pin positions that may hold the object in equilibrium and compute the corre�
sponding object orientation�

�� For each such position� enumerate the pin lengths that immobilize the object and compute
the remaining grasp parameters�

�� Compute the corresponding coe�cients �i and check that they are positive�

The �rst step of the algorithm uses linear programming and polytope projection techniques
���� ��� ��� ��
 to prune gripper con�gurations that cannot achieve equilibrium� The second step
uses distance constraints to reduce the enumeration of the pin positions that may yield equilibrium
grasps to the scan�line conversion of circular shells see ��� �� ��� ��
 for related approaches to
�xture planning for two�dimensional objects�� The third step of the algorithm uses condition �� of
Lemma � to reduce the enumeration of pin heights that yield immobilizing grasps to polygon scan
conversion� Finally� the fourth step uses 	� to compute the coe�cients �i and make sure they are
positive�

Steps � to � of the algorithm are detailed in Sections ����� to ������ Section ����� shows that its
complexity is ON�D�d�� where d is the maximum diameter of the object�s faces note that d � D�
and that for polyhedra with many faces having roughly the same area� d is in general much smaller
than D�� Empirical results are presented in Section ����

����� Testing the Existence of Equilibrium Con�gurations

We �rst check that the four surface normals positively span IR�� This is easily done by checking
that any three of the normals are linearly independent� then using the equation n � �P�

i�� �ini to
compute the coe�cients �i and test whether they have the same sign� If they do not� the quadruple
of faces under consideration is rejected� If they do� the normals positively span IR�� and 	� provides
four linear equations in the the nine unknowns �i� ui� vi i � �� �� ���

We can now test the existence of equilibrium con�gurations by using linear programming to
determine whether the �ve�dimensional polytope de�ned by 	� and the inequality constraints ��
and �i � � is empty� When this polytope is not empty� there is only in general� a subset of each
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face that can participate in an equilibrium con�guration� The subset corresponding to face number
i is determined by projecting the polytope de�ned onto the plane ui� vi��

Several algorithms can be used to perform this projection� including Fourier�s method ���
�
the convex hull and extreme point approaches of Lassez and Lassez ���� ��
� and the Gaussian
elimination and contour tracking techniques of Ponce et al� ���
� For faces with a bounded number
of edges� all of these algorithms run in constant time� and they can be used to construct subsets of
the original faces that are then passed as input to the rest of the algorithm� As noted earlier� this
projection process a�ords an early pruning of gripper con�gurations that cannot achieve equilibrium
and therefore immobilization�

����� Enumerating Pin Positions

As shown by Lemma �� given a quadruple of faces� we can �rst enumerate all possible pin locations
on the lower plate and compute the corresponding rotations� then enumerate the corresponding pin
heights and compute the corresponding jaw separation and object pose�

An exhaustive search of all possible grid coordinates would be extremely expensive� consider
an object of diameter D measured in units equal to the distance between successive grid points��
there are a priori OD�� di�erent pin locations� since we can position one pin at the origin and
the other two pins at arbitrary locations on the grid� Instead� we use an approach similar to the
algorithms presented by Wallack and Canny ���� ��
 and Brost and Goldberg ��
� using bounds on
the distance between two faces to restrict the set of grid coordinates under consideration� Clearly�
each pin must lie within the horizontal projection of each face� Thus if we position the �rst pin
at the origin� the integer point corresponding to the second pin is constrained to lie within the
circular shell centered at the origin with inner radius equal to the minimum distance between the
projections of the two corresponding faces and outer radius equal to the maximum distance� Given
the position of the second pin� the third pin is now constrained to lie within the region formed by
the intersection of the two shells associated with the �rst and second pin�

Enumerating the pin locations thus amounts to determining the integer positions falling in
planar regions de�ned by a circular shell or the intersection of two such shells� This can be done in
optimal time proportional to the number of these points by using a scan�line conversion algorithm
Figure ���

vertex

circular
arc

scan line

Figure �� Scan�line conversion� spans between consecutive boundary elements are �lled one scan�
line at a time�
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����� Enumerating Pin Heights

Once the position of the pins has been chosen and the corresponding rotation has been computed� we
can align the gripper�s and object�s coordinate systems so they are only separated by the horizontal
translation x� y�� This allows us to rewrite the contact equations as

aix� qi� � biy � ri� � 	 � ci � hi � � for i � �� �� �� ��

Equation �� holds whenever the three pins are in the planes of the faces fi of the grasped object�
Writing that the pins actually lie within the faces constrains the possible values of the translation
t between the gripper and object coordinate frames� let us denote by by f �i the convex polygon
fx� y�jaijx � qi� � bijy � ri� � cij � � for j � �� ��� kig geometrically� f �i can be constructed by
projecting fi onto the ui� vi� plane� then applying to the projection a symmetry with respect to the
origin and a translation by qi� ri��� Using once again �� shows that the point x� y� is restricted
to lie within the polygon F � � f �� � f �� � f �� Figure �a��� Substituting into �� and using the fact
that we can choose q� � r� � h� � � now yields

�
h�
h�

�
	 fA

�
x
y

�
� bj

�
x
y

�
	 F �g�

where

A �

�
a� � a� b� � b�
a� � a� b� � b�

�
� b �

�
c� � a�q� � b�r� � c��
c� � a�q� � b�r� � c��

�
�

F’

f1’

f2’f3’

x

y h3

h2
(a) (b)

Figure �� Enumerating pin lengths� a� the polygon F � de�ned in the x� y plane by the intersection
of the faces f �i � and b� the corresponding convex polygon in the h�� h� plane� along with the integer
points inside it�

In other words� the possible values of h�� h�� are simply the integer points that lie in the polygon
de�ned by the above equation� which is obtained from F � by an a�ne transformation Figure �b���
These points can once again be determined in optimal time proportional to their actual number
using a polygon scan�line conversion algorithm�

Now� for a given con�guration location plus length� of the pins� �� forms a system of three
linear equations in the three variables x� y� and 	� This system is readily solved to yield the pose
of the object and the separation of the plates� Note as before that the values of the coe�cients �i
are easily computed from 	� at this point�

Note that the gripper con�gurations found by our algorithm will automatically ensure that the
contacts between the three pins and the planes of the corresponding faces occur within the faces�
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����� Algorithm Analysis

As noted earlier� the complexity of the naive algorithm is ON�D��� Let us assume without loss
of generality that each face can be inscribed in a disc of diameter d note that d � D and that in
practice� we will often have d 
 D�� The area of a circular shell is then ODd�� and the area of
the intersection of two such shells is also at worse ODd�� Finally� the area of the polygon F � is
Od��� Thus the total complexity of the algorithm is ON�D�d��� As noted in Section �� this is
an improvement over the algorithm proposed in ���� ��
� whose complexity is ON�D�d�� since it
does not decouple the enumeration of the pin positions and pin heights�

To obtain a more realistic estimate of our algorithm�s behavior� let us consider a polyhedron
with total area A whose faces all have the same area� so d� � OD��N� � OA�N�� Under this
assumption� the complexity of our algorithm is ON�A��� It should also be noted that in practice�
when d 
 D� the area of the intersection of two circular shells will often be proportional to d�

rather than Dd� Of course� this does not change the worst�case complexity of the algorithm�

��� Implementation and Results

The implementation has been written in C� Figures � and 	 show some of the grasps of a tetrahedron
and of a polyhedron with �� faces that our algorithm has found using a �� � grid�

a� b�

c�

Figure �� Grasping a tetrahedron� some solutions for a �� � grid�

Table � gives some quantitative results� We have used a K �K grid with various values of K�
as well as pins whose height may take ten discrete values� The table shows the results obtained
without any pruning N�� using circular shell pruning only S�� and combining the projection� and
shell�pruning stages P�S�� The last column G� shows the number of these con�gurations that
actually yield immobilizing grasps� All run times have been measured on a SUN SPARCstation
��� The table shows that� as could be expected� pruning eliminates a much larger percentage
of the possible con�gurations in the case of the polyhedron with �� faces than in the case of
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a� b�

c�

Figure 	� Grasping a ���face polyhedron� some solutions for a �� � grid�

the tetrahedron� corresponding to the fact that� for most choices of faces� the range between the
minimum and maximum distances is smaller for the polyhedron with �� faces�

� In�Hand Manipulation

We present a new approach to in�hand manipulation based on the concept of inescapable con�gu�

ration space ICS� region � i�e�� on the idea of characterizing the regions of con�guration space for
which the object is not immobilized but is constrained to lie within a bounded region of the free
con�guration space see ���
 for related work in the two�dimensional� two��nger case�� As noted in
Section �� this allows us to generalize the notion of grasp stability to �nite�size displacements�

ICS regions will also allow us to plan in�hand object motions as sequences of gripper con�gura�
tions see ��� ��� ��� ��� ��� ��� ��
 for related work�� starting from some immobilizing con�guration�
we can open the gripper jaws and retract the immobilizing pins� then choose another triple of pins
whose ICS region contains the initial gripper con�guration� lower these pins� and as the jaws close�
move the object to the corresponding immobilized con�guration� Note that this approach does not
require modeling what happens when contact occurs� but it indeed requires frictionless contacts
to avoid wedging� We will assume in the rest of this section that the quadruple of faces under
consideration is �xed�

��� Geometry of the Problem

����� Free Con�guration Space Regions

Let us consider an immobilizing con�guration of the gripper� de�ned by the position qi� ri and
height hi of the pins i � �� �� ��� by the position x�� y� and orientation �� of the object in the
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Table �� Quantitative results for two test objects�

gripper�s coordinate system� and by the jaw separation 	�� We assume that the values of qi� ri and
hi are held constant and examine what happens when the separation of the jaws changes�

For a given jaw separation 	� the set Si	� of object con�gurations x� y� �� for which Cix� y� �� 	� �
� forms a ruled surface� indeed� its intersection with a plane � � constant is a line Li	� �� at dis�
tance ei � di	 from the �xed point qi� ri� of the x� y plane� and the angle between the x axis and
the normal to this line is �� 
i Figure ��� Changing � corresponds to rotating the line about the
point qi� ri�� while changing 	 corresponds to translating the line�

(qi,ri)

Li(   ,   )

Free Space

i

x

y

Figure �� Contact between a pin and a face in con�guration space�

The ruled surface Si	� splits the three�dimensional space IR��S� of con�gurations x� y� � into
a �free� half�space Vi	� and a �forbidden� half�space Wi	� where pin number i penetrates the
plane of fi� Furthermore� Vi	� resp� Wi	�� is characterized by Cix� y� �� 	� � � resp� � ���

Now let us consider the volume V 	� � V�	��V�	��V�	�� Given the form of Cix� y� �� 	�� it
is obvious that if a con�guration lies in free space for some value 	� of 	� it also lies in free space for
any other value 	� � 	�� In other words� V 	�� � V 	�� when 	� � 	� this is also intuitively obvious
since increasing 	 corresponds to opening the jaws�� In particular� the immobilizing con�guration
x�� y�� ��� is always in free space for 	 � 	��

The intersection of V 	� with a plane � � constant forms a triangular region T 	� ��� Note
that the triangles corresponding to various values of � are all homothetic since their edges make
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constant angles with each other� However� their size� position� and orientation varies with �� Note
also that these triangles� although possibly empty� are not degenerate� indeed� it is easy to verify
that a necessary and su�cient for two edges of T 	� �� to be parallel is that the normals to the
corresponding faces be either equal or symmetric with respect to the vector n� which contradicts
the assumption that the directions ni i � �� �� �� and n positively span IR��

As shown in Figure �� the region T 	� �� may contain an open subset Figure �a��� be reduced
to a single point Figure �b��� or be empty Figure �c���

a�

(q1,r1)

(q2,r2)(q3,r3)
Free
Space

b�

(q2,r2)(q3,r3)

(q1,r1)

c�

(q2,r2)

(q3,r3)

(q1,r1)

Figure �� Possible con�gurations of the intersection T 	� �� of V 	� with a plane � � constant� a�
T 	� �� contains an open neighborhood� b� it is reduced to an isolated point of the x� y plane� c�
it is empty�

In the second case Figure �b��� the three pins simultaneously touch the corresponding faces�
and E	� �� � �� In fact� it is easy to show that a necessary and su�cient condition for T 	� �� to
contain at least one point is that E	� �� � �� the condition is clearly necessary� since E	� �� is by
construction a convex combination of the functions Cix� y� �� 	�� the fact that E	� �� � � implies
that� for any x� y� there exists some i 	 f�� �� �g such that Cix� y� �� 	� � �� To show that the
condition is also su�cient� let us assume that T 	� �� is empty� This implies that� for any x� y� there
exists some i 	 f�� �� �g such that Cix� y� �� 	� � �� In particular� if x��� y��� is the point where
the two lines associated with the faces f� and f� intersect as remarked earlier� these lines are not
parallel�� we must have E	� �� � ���d�l��C�x��� y��� �� 	� � ��

This result allows us to characterize qualitatively the range of orientations � for which T 	� ��
is not empty Figure ���� for a given 	� the condition E	� �� � � is an equation in � that may have
zero� one� or two real solutions� a double root occurs at the minimum 	 � 	� or at the maximum
	 � 	max of the sinusoid� In the former case� E is strictly positive everywhere except at � � 
 where
it is equal to zero� and the range of orientations is S�� In the latter case� the range of orientations
reduces to a single point �� � 
� � For any value 	� in the open interval 
	�� 	max�� there are two
distinct roots ��� ���� and the range of orientations is the arc bounded by these roots and containing
��� Finally� for values of 	 outside the �	�� 	max
 interval� there is no solution� either 	 is strictly
smaller than 	� and the range of orientations is empty at least one of the pins penetrates the plane
of the corresponding face�� or 	 is strictly larger than 	max� and the range of orientations is S��

In particular� since the volume V 	� is a stack of contiguous triangles T 	� ��� it is clear at this
point that� for 	 � 	�� V 	� is a non�empty� connected� compact region of IR� � S�� The analysis
conducted in this section also gives some geometric insight on the immobility conditions derived
earlier� In particular� it con�rms that the minimum point 
� � 	�� of the contact sinusoid corre�
sponds to an isolated point of con�guration space or equivalently to an immobilizing con�guration�
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configuration

Figure ��� Regions of �� 	 space delimited by the sinusoid E	� �� � ��

indeed� the triangle T 	�� 
�� is reduced to a point� and T 	� �� is empty for any � �� ��� Likewise�
although the maximum 
� 	max� of the sinusoid corresponds to an equilibrium grasp� it does not
yield an immobilizing grasp since the object is free to undergo arbitrary rotations�

Note also that the above analysis does not rely in any way on the contact wrenches being in
essential equilibrium� Thus we have kept our promise� and shown that the grasp planning approach
presented in Section � can be extended to handle arbitrary convex polygons� This only requires two
simple modi�cations of the grasp planning algorithm� �rst� step �� of the algorithm now requires
computing the projection of a k � ��dimensional polytope onto a plane� where k is the number of
edges bounding the bottom face f � Second� since the coe�cients �i i � �� ��� k� are not uniquely
determined by 	� for faces with k � � edges� step �� of the algorithm now requires using linear
programming to check that there exists a set of nonnegative coe�cients �i satisfying 	�� For faces
with a bounded number of edges� these two modi�cations do not change the overall complexity of
the algorithm�

����� Inescapable Con�guration Space Regions

The discussion so far has characterized the contacts between the pins and the planes of the cor�
responding faces� ignoring the fact that each face is in fact a convex polygon in its plane� Let
us construct a parameterization of the set Ei	� �� of con�gurations x� y� for which the tip of pin
number i belongs to the corresponding face� Obviously� Ei	� �� is a subset of Li	� ��� This line is
at distance �di	 � ei from the point qi� ri�� with a normal whose orientation is � � 
i� hence� it
can be parameterized by

�
x
y

�
�

�
qi
ri

�
� �di	 � ei�

�
cos� � 
i�
sin� � 
i�

�
� �

�� sin� � 
i�
cos� � 
i�

�
� � 	 IR�

Using this parameterization and �� yields

�
ui
vi

�
� di	 � ei�

�
cos
i
sin
i

�
� �

�� sin
i
cos
i

�
�

In turn� substituting these values in the inequalities �� de�ning fi yields a set of linear in�
equalities in � and 	� Actual contact occurs for pairs �� 	� lying in the convex polygon de�ned by
these constraints� It follows that for given values of 	 and �� Ei	� �� is a line segment� and the
parameters �� and ��� associated with its endpoints are piecewise�linear functions of 	�
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Now let us consider the three segments Ei	� �� i � �� �� �� together Figure ���� if Ei	� ��
and Ej	� �� intersect for all i �� j� then the three segments completely enclose the triangle T 	� ��
Figure ��a��� We say that the corresponding con�guration satis�es the enclosure condition since
there is no escape path for the object in the x� y plane with the corresponding orientation �� More
generally� when all triples of segments in the range of orientations associated with a given jaw
separation 	 satisfy the enclosure condition� V 	� itself is an inescapable con�guration space ICS�
region� in other words� the object is free to move within the region V 	�� but remains imprisoned
by the grasp and cannot escape to in�nity�

a�

(q1,r1)

(q2,r2)(q3,r3)
Free
Space

b�

(q1,r1)

(q2,r2)(q3,r3)

c�

(q1,r1)

(q2,r2)(q3,r3)

Figure ��� Triangle con�gurations� a� three segments enclosing a triangle� b� a critical con�gu�
ration� c� an opened triangle and an escape path�

����� Maximum ICS Regions

Here we address the problem of characterizing the maximum value 	� for which V 	� forms an ICS
region for any 	 in the �	�� 	

�
 interval� We know that at 	 � 	� the three segments intersect at the
immobilizing con�guration� forming an ICS region reduced to a single point� Thus the enclosure
condition holds at 	 � 	�� On the other hand� as 	  ��� the whole con�guration space becomes
free of obstacles� thus there must exist a critical point for some minimal value of 	 greater than 	��
This guarantees that 	� has a �nite value�

As shown by Figure ��b�� a critical event occurs when one of the endpoints of a segment lies on
the line supporting another segment� After this event� the line segments fail to enclose the triangle
T 	� �� and the object can escape the grasp Figure ��c���

According to the results established in the previous section� we can parameterize the coordinates
of one of the endpoints of the segment Ei	� �� by

�
x
y

�
�

�
qi
ri

�
� �di	 � ei�

�
cos� � 
i�
sin� � 
i�

�
� fi	 � gi�

�� sin� � 
i�
cos� � 
i�

�
� ���

on the appropriate 	 interval� with constants fi and gi determined by the coe�cients aij� bij and
cij of ���

A critical event occurs when the endpoint under consideration is on the line Lj	� �� for some
j �� i� Substituting ��� into �� yields� after some simple algebraic manipulation

Aij cos� � �ij� �Bij	 � Cij � �� ���

�	



where ������
����	

Aij �
q
qi � qj�� � ri � rj���

�ij � 
j �Argqi � qj� ri � rj��
Bij � dj � di cos
j � 
i� � fi sin
j � 
i��
Cij � �ej � ei cos
j � 
i� � gi sin
j � 
i��

In other words� critical con�gurations form a second sinusoid in �� 	 space� called the critical

sinusoid in the rest of this presentation�
We seek the minimum value of 	� � 	� for which the range of orientations includes one of

the critical orientations� As discussed above� we know that 	� exists� Let us suppose �rst that
a critical value lies in the interior of the range of orientations associated with some 	� � 	�� and
denote by 	min the minimum value of 	 on the critical sinusoid� By de�nition� we have 	� � 	min�
Suppose that 	� � 	min� Then by continuity� there exists some 	� such that 	min � 	� � 	� and the
corresponding range of orientations also contains a critical orientation Figure ���� The argument
holds for any value of 	 � 	min� In other words� either the range of orientations of 	min contains a
critical orientation� in which case 	� � 	min Figure ��a��� or it does not� in which case the critical
value associated with 	� must be one of its range�s endpoints Figure ��b��� This is checked by
intersecting the contact sinusoid and the critical one� Note that this process must be repeated six
times once per each segment�vertex pair� to select the minimum value of 	��

a� +2+

1

2

*
= min

b� +2+

1

2

*

Figure ��� Critical con�gurations� a� the critical con�guration is the minimum of the critical
sinusoid shown as the thicker curve�� b� the critical con�guration is the minimum intersection of
the critical sinusoid and the contact sinusoid�

����� Main Result

The following lemma follows immediately from the results established in Sections ������ ����� and
����� and summarizes the �ndings of these sections�

Lemma �� For given integer pin positions and heights qi� ri and hi i � �� �� �� and an immobilizing
con�guration x�� y�� ��� 	��� there exists a critical jaw separation 	� such that�

�� for any 	 � 	�� there exists a path allowing the object to escape the grasp�

�� for any 	 in the interval �	�� 	
�
� the volume V 	� is an inescapable region of con�guration

space that contains the con�guration x�� y�� ��� 	���
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�� for any 	� � 	�� in the interval �	�� 	
�
� V 	�� � V 	���� and

�� 	� can be computed in closed form as the minimum of a sinusoid or the intersection of two
sinusoids�

��� Algorithm

Lemma � can be used as a basis for in�hand manipulation by remarking that an object anywhere
in the ICS region associated with some gripper con�guration can be moved to the corresponding
immobilized position and orientation by closing the gripper jaws this follows immediately from
properties �� and �� in Lemma ��� Thus we can plan manipulation sequences from one immobilized
con�guration to another by using the following algorithm�

O�	line�

�� Compute the set S of all immobilizing con�gurations of the object�

�� Construct a directed graph G whose vertices are the elements of S and whose edges are the
pairs s� s�� of elements of S such that s belongs to the maximum ICS region ICSs�� associated
with s��

On	line�

�� Given two con�gurations i and g in S� search the graph G for the shortest path going from
the initial con�guration i to the goal con�guration g�

Once a path has been found� the corresponding manipulation sequence can be executed� starting
from the con�guration i� each edge s� s�� in the path allows us to move the object from s to s� by
opening the jaws and retracting the pins associated with s� then lowering the pins associated with
s� and closing the jaws�

The grasp planning algorithm of Section � can of course be used to implement Step �� of
the algorithm� Finding �all� immobilizing con�gurations has� however� slightly di�erent meanings
in manipulation and grasping tasks� as explained in Section ����� below� As shown in Section
������ deciding whether an immobilizing con�guration s belongs to the maximum ICS region of
another con�guration s� does not require an explicit boundary representation of ICSs��� Indeed�
the construction of G in Step �� of our algorithm can be implemented e�ciently by mapping it onto
a three�dimensional dominance problem ���
� as explained in Section ������ Finally� Step �� can be
implemented as a breadth��rst search of the graph G� The overall complexity of the manipulation
planning algorithm is analyzed in Section ������ and empirical results are presented in Section ����

����� Triples of Pins� Prototypes and Shifts

As remarked earlier� the algorithm of Section � can be used to construct the immobilizing ob�
ject�gripper con�gurations� There is however a di�erence between grasping and manipulation
applications� during grasp planning� one can always assume that the �rst pin is at the origin with
zero height� Of course� when a grasp is actually executed� the pin positions and heights� along with
the jaw separation� all have to be shifted so that the corresponding variables are all positive and
the pin positions remain within the extent of the top plate� Nonetheless� gripper con�gurations
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that only di�er by a shift of the three pin positions are equivalent for grasping purposes� This is
not the case for in�hand manipulation� where the goal is to move the object held by the gripper
across the bottom plate� this forces us to take into account all shifted con�gurations of a grasp�

We will say that a triple of pin positions with the �rst pin located at the origin is a prototype�
and that all positions of the triple within the bottom plate are the shifts of this prototype� For
each prototype� we can de�ne the minimum rectangle aligned with the p� q� coordinate axes and
enclosing the pins� If W and H denote the width and height of this rectangle� and K� is the total
number of grid elements� the prototype admits K�W �K�H� di�erent shifts� which can trivially
be computed in time proportional to their number� According to Section ������ there are OD�d��
immobilizing prototypes� to which correspond OD�d�K�� shifted object�gripper con�gurations� If
we assume that the manipulated object �ts completely on the gripper�s bottom plate� note that we
will have d � D � K�

����� Testing whether a Con�guration Belongs to the Maximum ICS Region of an	

other Con�guration

Constructing the graph G requires the ability to decide whether an immobilizing con�guration sa
lies in the region ICSsb� associated with another con�guration sb� Let �a denote the orientation
of the con�guration sa� and 	�b denote the critical jaw separation associated with sb� A necessary
condition for sa to belong to ICSsb� is of course that sa belongs to the range of orientations
associated with 	�b �

When this necessary condition is ful�lled� let T 	�b � �a� denote the slice of ICSsb� at � � �a�
Then sa will belong to ICSsb� if and only if sa is inside T 	

�

b � �a�� Note that constructing T 	
�

b � �a�
does not require constructing an explicit boundary representation of ICSsb� then intersecting it
with the plane � � �a� instead� we construct the triangle directly from the lines Li	

�

b � �a� as
explained in Section ������

Thus constructing the graph only requires the ability of computing 	� and the corresponding
range or orientations� constructing the triangles T 	�� �� for discrete values of �� and testing whether
a point belongs to one of these triangles� Each one of these computations can be done in constant
time�

����� Constructing the Graph

From Section �� we know that for a given triple of pins� all immobilizing con�gurations of a given
object will have the same orientation� independent of the pin heights� Of course� the immobilized
orientation of the object remains the same when the triple of pins is arbitrarily shifted on the
grid� Thus we can associate to each immobilizing prototype a plane � �constant of the object�s
con�guration space� and all the corresponding immobilizing con�gurations will lie in that plane�
In other words� the vertices of the graph G will form layers of immobilized con�gurations Figure
��a�� corresponding to as many prototypes�

We now give an e�cient algorithm for constructing the edges of the graph G� Let Sa and Sb
be the sets of immobilized con�gurations corresponding to the layers � � �a and � � �b of the
con�guration space� We want to �nd all pairs of con�gurations sa in Sa and sb in Sb such that
sa lies within ICSsb� or equivalently within T 	�b � �a�� This can of course be achieved by testing
for each point�triangle pair whether the point belongs to the corresponding triangle� Instead� we
observe that� following Section ������ the triangles T 	�b � �a� associated with all the elements of Sb
are homothetic and� since � is �xed� they also have the same orientation� This allows us to derive
a more e�cient method�
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Figure ��� a� layers of immobilized con�gurations of the object� b� points and triangles within
the same layer�

Let us restate the problem� given a set of points P � fp�� p�� ��� png� and a set T � ft�� t�� ��� tmg
of homothetic triangles having the same orientation� �nd all pairs pi� tj� i � �� ��� n� j � �� ���m�
such that the point pi is inside the triangle tj Figure ��b��� This type of query is common in
computational geometry� for example� Chazelle gave an optimal Ologm � r� algorithm for the
related problem of �nding the subset of m isothetic rectangles which contain a query point� where
r is the number of rectangles returned �	
�

This problem can be mapped onto another classical one through the following transformation�
let ui i � �� �� �� denote the inward unit normals to the edges of the triangles� Given some choice of
origin in the plane� we can associate with any point p its coordinates x�� x�� x�� along the vectors
ui Figure ���� Likewise� we can associate with each triangle t the signed distances y�� y�� y��
between the origin and its edges along the vectors ui� Obviously p is inside t if and only if xi � yi
for i � �� �� �� If we de�ne the partial order � over IR� by x�� x�� x�� � y�� y�� y�� if and only
if xi � yi for i � �� �� �� we have reduced our initial problem to the problem of �nding the pairs
of points p�i in P � and t�j in T � such that p�i � t�j� where P

� and T � are subsets of IR� containing
respectively n and m points� This is the problem called ��D Merge Dominance� by Preparata and
Shamos ���� pp� ��	����
� who give a simple divide�and�conquer algorithm for solving this problem
in Om � n� logm � n� � s� time and Om� n� space� where s is the number of pairs found by
the algorithm�

O
u1

u2

u3

x2

y2

x3

y3

y1
x1

p

t

Figure ��� Three�dimensional coordinates associated with a point p and a triangle t�
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����� Algorithm Analysis

The cost of the algorithm is dominated by the construction of the graph� Let V denote the number
of immobilizing gripper con�gurations or equivalently the number of vertices of G�� and let P
denote the number of prototypes associated with these con�gurations� Note that P � OD�d��
and V � OPd�K�� according to the analysis of Section �� Let E denote the number of edges of G�
Since each prototype yields Od�K�� shifted con�gurations and d � K� it follows from the analysis
of the dominance algorithm that the construction of the graph takes OP �d�K� logK � V � E�
time� Of course� E � OV ���

��� Implementation and Results

We have implemented the manipulation planning algorithm� including its �D dominance part� and
tested our implementation using a �� � grid resolution� As before� the program has been written
in C� and all run times have been measured on a SUN SPARCstation ���

Figure �� shows an example of maximum ICS region in the con�guration space x� y� �� for
one of the immobilized con�gurations of a tetrahedron� Note that this graphical representation
is for display only� our algorithm does not construct an explicit boundary representation of the
ICS� Instead� we compute the corresponding 	� value and the associated range of orientations� Our
grasp planning program �nds ��� prototypes and ������ shifted immobilizing con�gurations� and
the corresponding ICS computation takes �� seconds� The graph G contains ����	��	� edges� and
its construction takes ��� seconds�
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Figure ��� An ICS region in con�guration space� a��b� two views of an immobilized con�guration
of a tetrahedron� c� the corresponding ICS region�

Once the graph has been constructed� the search for sequences of gripper con�gurations is quite
e�cient� a simple breadth��rst approach has been used in our experiments to search the graph G�
and the search time is below � second in all cases�

Figures �� and �	 show two examples� In the �rst one� the program �nds a ��step sequence to
move the object from the con�guration shown in Figure ��a� to the one shown in Figure ��b��
Note that� although the pin con�gurations are the same in Figures ��c� and ��d�� the pin lengths
are actually di�erent� yielding di�erent object positions�

Figure �	 shows a more complicated example� where the program �nds a 	��step sequence of
gripper con�gurations to move the object from the con�guration shown in Figure �	a� to the one
shown in Figure �	b��
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a� b� c� d�

Figure ��� The four steps of a manipulation sequence for moving a tetrahedron from con�guration
a� to con�guration d��

a� b� c�

Figure �	� Another example� a� initial con�guration� b� goal con�guration� c� sequence of moves�

� Discussion

As noted in the Introduction� we are currently in the process of constructing the recon�gurable
gripper� the mechanical design and assembly are complete� and we are completing the electronics
and computer interface for the control unit� Thus we hope to be able to report experimental results
using the actual gripper within a few weeks�

We are investigating a number of extensions of the work presented in this paper� First� the
grasp planning algorithm generalizes to �xture planning� and Figure �� shows a three�dimensional
�xture synthesized by the algorithm of ���� ��
� We are also looking at grasp and �xture planning
for devices that have a variety of discrete and continuous degrees of freedom� for example �xtures
using rotating clamps�

We are also investigating various extensions of our in�hand manipulation approach� for example�
the stepper motors used to actuate the pins of our recon�gurable gripper allow essentially continuous
vertical motions of the pins� We plan to address the problem of constructing manipulation plans
that exploit these continuous degrees of freedom�

Finally� although the algorithms presented in this paper have proven e�cient in our experiments�
it would be interesting to establish the intrinsic complexity of the grasp and manipulation planning
problems� and of course to develop optimal algorithms achieving this complexity�
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Figure ��� Three�dimensional �xtures�
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