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Determination of
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Delta-Like Manipulators

Abstract

The DELTA robot and the manipulators derived from the DELTA
robot are a relevant class of translational manipulators. In this pa-
per, the mobility analysis of these parallel translational manipula-
tors is developed in full. The manufacturing and mounting conditions
that guarantee the pure translation of the platform are analytically
derived. Moreover, it is demonstrated that these manipulators can as-
sume singular configurations, called rotation singularities, in which
they are no longer able to impose the platform translation. Finally,
the geometric and analytic conditions that make it possible to find
all the singular configurations of these manipulators are provided.

KEY WORDS—kinematics, parallel mechanism, mobility
analysis, singularities

1. Introduction

Spatial parallel manipulators (SPMs) arouse great interest in
the academic and industrial world. In fact, usually, high stiff-
ness and good positioning precision in about all the workspace
are features required for a manipulator and SPMs exhibit these
features among their advantages.

A SPM is composed of an end-effector (platform) con-
nected to the frame (base) by means of a number of kinematic
chains (legs). In general, only one joint is actuated in each
leg and the number of legs is equal to the degrees of freedom
(DoF) of the manipulator. The platform position and orien-
tation (pose) are controlled by acting on the actuated joints.
Moreover, when the actuators are locked the SPM becomes
a structure in which all the legs concur to stand the external
loads applied to the platform.

Many types of SPM have been studied and designed.
Among these manipulators, SPMs suitable to impose plat-
form translation with respect to the base constitute an impor-
tant subset. Two criteria have been employed to achieve the
platform translation: (i) the use of isostatic structures, e.g.,
the prism-robot (Hervé 1995), or overconstrained structures,
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e.g., the Y-star (Hervé 1995) and the Tsai robot (Stamper, Tsai,
and Walsh 1997), which obtain the three translational DoFs by
using repeated constraints; (ii) the use of 3-DoF mechanisms
(Clavel 1988; Tsai 1996; Di Gregorio and Parenti-Castelli
1998; Di Gregorio 2000) which match some manufacturing
and mounting conditions.

The DELTA robot (Clavel 1988), see Figure 1, and the ma-
nipulators derived from the DELTA robot (Zobel, Di Stefano,
and Raparelli 1996; Clavel et al. 1999) are a relevant class of
translational manipulators using a 3-DoF mechanism. Hence-
forth, these manipulators will be called DELTA-like manip-
ulators (DLMs). DLMs (Figure 2) feature three legs like the
one shown in Figure 3, where a parallelogram (Ai1Ai2Bi1Bi2

in Figure 3), whose sides are rods connected to each other by
means of spherical pairs, has a side (Bi1Bi2 in Figure 3) fixed
in the platform, while the parallelogram’s side not adjacent to
the platform (Ai1Ai2 in Figure 3) is connected to the base via
an actuated joint (Ti in Figure 3), imposing the translation of
the side with respect to the base. In the DELTA robot (Fig-
ure 1) the actuated joint,Ti , is a revolute pair with the axis
parallel to the parallelogram’s side bound to translate. The leg
of Figure 3 (DELTA-like leg) leaves five DoFs to the relative
motion between platform and base.

The success of the DLMs is related to the fact that the
DELTA-like leg permits us to design very fast manipulators
(Clavel 1988).

DLMs (Figure 2) are special cases of the parallel manipu-
lator shown in Figure 4, whose three DoFs are not necessarily
translational. Hereafter, the manipulator of Figure 4 will be
called a generalized DELTA-like manipulator (GDLM). In
GDLMs, the platform is connected to the base by means of
three legs, each one made of an actuated joint (Ti , i = 1, 2,
3, in Figure 4), working out the translation of the straight line
through the centers (Ai1 andAi2, i = 1, 2, 3, in Figure 4) of
two spherical pairs, and two rods (Ai1Bi1 andAi2Bi2, i = 1,
2, 3, in Figure 4) joined to the platform via a spherical pair.

Recently, Di Gregorio and Parenti-Castelli (1998, 1999)
and Di Gregorio (2000) have shown that some translational
parallel manipulators with three equal legs, each one leav-
ing five DoFs to the relative motion between platform and
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Fig. 1. DELTA robot.
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Fig. 2. DLM: S indicates a spherical pair and T indicates a
joint that makes one straight line translate.
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Fig. 4. A GDLM.
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base, may reach singular configurations in which the angu-
lar velocity of the platform is not determined. These singular
configurations are called rotation singularities. Starting from
a rotation singularity, the platform motion may no longer be
purely translational.

Finding all the singularities is a mandatory step in the de-
sign of these manipulators.

In this paper, the mobility analysis of the DLMs is pre-
sented on the whole and the ability of the DLMs to reach
rotation singularities is demonstrated. Moreover, the equa-
tions which make it possible to draw the loci of all the DLM
singularities in the platform’s Cartesian space are provided.
The presented equations contain the geometric parameters of
the manipulator and can be employed to choose the manipu-
lator’s geometry with the goal of clearing the workspace from
the singular configurations.

The following section demonstrates the skill of GDLMs to
make the platform translate under some mounting and man-
ufacturing conditions. Next, the DLM singularity conditions
will be derived as a corollary of this demonstration.

2. Kinematic Analysis of the GDLM

With reference to Figure 4, the closure equations of the GDLM
can be written as follows

(Bij − Aij )
2 = L2

ij
i = 1, 2, 3; j = 1, 2 (1)

where Lij is the constant length of the rod AijBij .
Differentiating eq. (1) with respect to the time variable

yields

(Ḃij − Ȧij ) · uij = 0 i = 1, 2, 3; j = 1, 2 (2)

where

uij = (Bij − Aij )

Lij

i = 1, 2, 3; j = 1, 2. (3)

In eq. (2) Ḃij and Ȧij are the velocities of the points Bij

and Aij (Figure 4), respectively.
By calling P the origin of a Cartesian reference system,

Sp, fixed in the platform (Figure 4), the Ḃij velocity can be
written in the following way

Ḃij = Ṗ + ω × (Bij − P) i = 1, 2, 3; j = 1, 2 (4)

where ωωω is the angular velocity of the platform and Ṗ is the
velocity of the point P .

By taking relationships (4) into account, eq. (2) becomes

uij · Ṗ + [(Bij − P) × uij ] · ω = Ȧij · uij

i = 1, 2, 3; j = 1, 2
(5)

where the identity [ωωω × (Bij − P)] · uij = [(Bij − P)× uij ] ·ωωω
has been used.

By using eq. (5) it is possible to demonstrate the following
theorem:

THEOREM 1. If a GDLM performs an elementary motion
starting from a non-singular configuration where all the legs
satisfy the relationships

ui1 = ui2 i = 1, 2, 3 (6)

then the platform performs an elementary translation with
respect to the base.

Proof. Subtracting eq. (5) with j=2 from eq. (5) with j=1
yields

(ui1 − ui2) · Ṗ + [(Bi1 − P) × ui1 − (Bi2 − P) × ui2] · ω

= Ȧi · (ui1 − ui2) i = 1, 2, 3 (7)

where Ȧi indicates the velocity of the points Ai1 and Ai2 that
translate together (which implies that they have same velocity
and acceleration) because of the joint Ti (remember that the
joint Ti is manufactured so as to make the segment Ai1Ai2

translate with respect to the base).
If relationships (6) are satisfied, eq. (7) becomes

ni · ωωω = 0 i = 1, 2, 3 (8)

where, denoting ui either of the unit vectors ui1 and ui2, the
vectors ni , i = 1, 2, 3, are defined as follows:

ni = ui × (Bi2 − Bi1) i = 1, 2, 3. (9)

The vectors ui and ni depend only on the GDLM config-
uration. If the GDLM configuration is such as to make the
ni vectors linearly independent, i.e., the configuration is not
singular, system (8) can be matched if and only if the platform
angular velocity, ωωω, vanishes. �

Conditions (6) guarantee an infinitesimal translation of the
platform.

A finite translation of the platform is an infinite sequence
of infinitesimal translations which implies that the platform
angular velocity,ωωω, and all the time derivatives of the platform
angular velocity vanish at the starting configuration of the
manipulator.

Differentiating eq. (5) with respect to the time variable
yields

(P̈ − Äij ) · uij + (Ṗ − Ȧij ) · u̇ij + [(Bij − P) × uij ] · ω̇

+ [(Ḃij − Ṗ) × uij + (Bij − P) × u̇ij ] · ω = 0 (10)

i = 1, 2, 3; j = 1, 2.

By differentiating definition (3) the following expression
for u̇ij results

u̇ij = (Ḃij − Ȧij )

Lij

i = 1, 2, 3; j = 1, 2. (11)
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By taking relationships (4) into account, expression (11)
becomes

u̇ij = (Ṗ − Ȧij )

Lij

+ ω × (Bij − P)

Lij

i = 1, 2, 3; j = 1, 2.

(12)

Introducing relationships (12) and substituting Ȧi for Ȧi1

and Ȧi2 into eq. (10) yields

(P̈ − Äi ) · uij + (Ṗ − Ȧi )
2

Lij

+ [(Bij − P) × uij ]

· ω̇ + { 2

Lij

(Bij − P) × (Ṗ − Ȧi ) + 1

Lij

(Bij − P)

× [ω × (Bij − P)] + (Ḃij − Ṗ) × uij } · ω = 0

i = 1, 2, 3; j = 1, 2

(13)

where Äi denotes either of the accelerations Äi1 and Äi2 that
are equal to each other because of the joint Ti (Figure 4).

By using eq. (13), it is possible to demonstrate the follow-
ing theorem:

THEOREM 2. If a GDLM meeting the following manufac-
turing conditions

Li1 = Li2 i = 1, 2, 3 (14a)

‖(Ai2 − Ai1)‖ = ‖(Bi2 − Bi1)‖ i = 1, 2, 3 (14b)

is so mounted as to match conditions (6) in a non-singular
configuration and starts moving from this configuration, then
the platform performs a finite translation with respect to the
base.

Proof. Since the starting configuration satisfies conditions (6),
Theorem 1 holds and the platform angular velocity,ωωω, is equal
to the null vector. Thus, in this case, eq. (13) becomes

(P̈ − Äi ) · ui + (Ṗ − Ȧi )
2

Lij

+ [(Bij − P) × ui] · ω̇ = 0

i = 1, 2, 3; j = 1, 2

(15)

where ui has substituted either of the unit vectors ui1 and ui2.
Subtracting eq. (15) with j=2 from eq. (15) with j=1 yields

ni · ω̇ = (Ṗ − Ȧi )
2

(
1

Li2

− 1

Li1

)
i = 1, 2, 3 (16)

where ni is the vector defined by expression (9). If conditions
(14a) are satisfied, eq. (16) becomes

ni · ω̇ = 0 i = 1, 2, 3. (17)

If the GDLM configuration is such as to make the ni vec-
tors linearly independent, i.e., the configuration is not singu-
lar, system (17) can be matched if and only if the platform

angular acceleration, ω̇, vanishes. Since, in the starting con-
figuration, ωωω is the null vector and conditions (14a) and (14b)
hold, the platform is constrained to perform an elementary
translation at the end of which the GDLM reaches another
configuration that still satisfies the conditions (6); moreover,
since ω̇ is the null vector, ωωω must still be the null vector in the
configuration reached after the elementary translation. As a
consequence, if the reached configuration is non-singular, the
elementary motion that the platform can perform starting from
the reached configuration must be an elementary translation
with the same characteristics of the first elementary transla-
tion (i.e., the GDLM still satisfies conditions (6) and ωωω must
still be the null vector in the configuration reached after the
elementary translation). By reiterating this reasoning, it can
be concluded that starting from a non-singular configuration
which satisfies conditions (6), a GDLM, which matches con-
ditions (14), makes the platform perform an infinite sequence
of elementary translations (i.e., a finite translation) until the
GDLM reaches a singular configuration (rotation singularity)
where the vectors ni , i = 1, 2, 3, are linearly dependent. �

As a final remark, it has to be observed that, if conditions
(6) and (14) hold, the following relationships will also hold:

(Bi2 − Bi1) = (Ai2 − Ai1) i = 1, 2, 3. (18)

By taking relationship (18) into account, definition (9)
becomes

ni = ui × (Ai2 − Ai1) i = 1, 2, 3 (19)

where (Ai2 − Ai1) is a constant vector in a reference sys-
tem, Sb, fixed in the base and ui depends only on the GDLM
configuration.

3. Mobility Analysis of the DLM

A GDLM satisfying the manufacturing conditions (14) is a
DLM and, if it is so mounted as to match the mounting con-
ditions (6), it makes the platform translate, provided that the
singular configurations are not touched. The DLM mobility
analysis, focused on the translational configurations, can be
performed by taking the equation system constituted of the
three eqs. (5) with j = 1 and the three eqs. (8) for reference.
This system is as follows:

ui · Ṗ + [(Bi1 − P) × ui] · ω = Ȧi · ui i = 1, 2, 3 (20a)

ni · ωωω = 0 i = 1, 2, 3. (20b)

System (20) can be written in matrix form as follows

J
{

Ṗ
ω

}
= b (21)

with

J =
[

U M
0 N

]
(22.1)

b = (Ȧ1 · u1, Ȧ2 · u2, Ȧ3 · u3, 0, 0, 0)T (22.2)
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where U, N and M are 3 × 3 matrices defined as follows

U =

 uT

1

uT
2

uT
3


 ; N =


 nT

1

nT
2

nT
3


 ;

M =

 [(B11 − P) × u1]T

[(B21 − P) × u2]T

[(B31 − P) × u3]T


 ; (22.3)

0 is the 3 × 3 null matrix and (·)T denotes the transpose of (·).
The mobility analysis consists of solving two problems:

direct velocity analysis and inverse velocity analysis. Direct
velocity analysis is the determination of the platform veloci-
ties Ṗ and ωωω when the velocities Ȧi , i = 1, 2, 3, imposed by
the actuators, are known. Inverse velocity analysis is the de-
termination of the signed intensities of the velocities Ȧi , i =
1, 2, 3, (note that the directions of the velocities Ȧi , i = 1, 2,
3, are always assigned by the structure of the actuators Ti , i =
1, 2, 3, (Figure 3)) to be imposed by the actuators in order to
obtain an assigned value of the linear platform velocity Ṗ.

3.1 Direct Problem

If the velocities Ȧi , i = 1, 2, 3, are known and the platform
velocities Ṗ and ωωω have to be computed, system (20) will be
singular when the determinant of matrix J vanishes.

Definitions (22) give the following expression of the de-
terminant of matrix J

det(J) = det(U) det(N) (23)

where the determinants of the U and N matrices are

det(U) = u1 · u2 × u3 (24a)

det(N) = n1 · n2 × n3. (24b)

Taking expressions (23) and (24) into account, the singu-
larity condition can be analytically expressed as follows:

(u1 · u2 × u3)(n1 · n2 × n3) = 0. (25)

Condition (25) is satisfied when at least one of the follow-
ing conditions is matched:

n1 · n2 × n3 = 0 (26a)

u1 · u2 × u3 = 0. (26b)

When condition (26a) is satisfied, eq. (20b) is linearly de-
pendent and the angular velocity, ωωω, of the platform is not
determined (rotation singularity). It is worth noting that con-
dition (26a) also makes system (17) singular and the angular
acceleration, ω̇, not determined.

On the other hand, when condition (26b) is satisfied, the
coefficient matrix of the platform translation velocity, Ṗ, in

eq. (20a) is singular and Ṗ is not determined (translation
singularity).

To better understand when these singularities occur, in
the following subsections, the actuators will be considered
locked, while the DLM assumes a configuration matching ei-
ther of conditions (26), and the additional DoF, introduced by
the singularity, will be investigated.

3.1.1. Rotation Singularities

The rotation singularities are the configurations that match
condition (26a).

From a kinematic point of view, the vectors ni , i = 1, 2, 3,
are parallel to axes the platform cannot rotate around because
eq. (20b) states that the dot products ni ·ωωω, i = 1, 2, 3, must be
equal to zero. This result can also be deduced by considering
that, if the two rods Ai1Bi1 and Ai2Bi2 (Figure 3) are parallel to
each other, the segment Bi1Bi2, fixed in the platform, cannot
rotate in the plane of the parallelogram Ai1Ai2Bi2Bi1 (Pierrot
and Company 1999).

From a geometric point of view, by analyzing relationships
(19) it comes out that the ni direction is perpendicular to the
plane which the parallelogram Ai1Ai2Bi2Bi1 (Figure 3) lies
on and that the ni intensity is proportional to the sine of the
angle between (Bi2−Ai2) and (Ai2−Ai1), angle θi in Figure 3.
Thus condition (26a) is verified, when one of the following
geometric conditions occurs.

(R1) One out of the parallelograms Ai1Ai2Bi2Bi1, i = 1, 2,
3, degenerates into a segment (Figure 5(a)). When this
geometric condition occurs, the platform can perform
infinitesimal rotations around an axis parallel to the in-
tersection line between the planes of the two parallelo-
grams which do not degenerate into a segment.

(R2) Two out of the parallelograms Ai1Ai2Bi2Bi1, i = 1, 2, 3,
lie on the same plane or on parallel planes (Figure 5(b)).
When this geometric condition occurs, the platform can
perform infinitesimal rotations around an axis parallel
to the planes of all three parallelograms.

(R3) The intersections of the planes, the parallelograms
Ai1Ai2Bi2Bi1, i = 1, 2, 3, lie on, are three parallel lines
(Figure 5(c)). When this geometric condition occurs,
the platform can perform infinitesimal rotations around
an axis parallel to the intersection lines between the
planes of the parallelograms.

The actual occurrence of the additional rotational DoF,
in some of the above listed geometric conditions, has been
observed in a prototype of the DELTA robot (Figure 1) by
Clavel (1988) and justified by static reasoning.

The vectors ni , i = 1, 2, 3, can be written as explicit func-
tions of the coordinates of a platform point, e.g., P (Figure 2),
and of the geometric parameters of the mechanism by solving
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(a)

(b)

(c)

Fig. 5. Rotation singularities: (a) one out of the parallelo-
grams Ai1Ai2Bi2Bi1, i = 1, 2, 3, degenerates into a segment;
(b) two out of the parallelograms Ai1Ai2Bi2Bi1, i = 1, 2,
3, lie on parallel plane; (c) the intersections of the planes,
which the parallelograms Ai1Ai2Bi2Bi1, i = 1, 2, 3, lie on,
are parallel lines.

the inverse position analysis of the DLM. Thus, for a given
geometry eq. (26a) is a scalar equation in three unknowns: the
coordinates of the platform point P . In the Cartesian space of
the platform positions, the geometric representation of eq.
(26a) is a fixed surface that is the geometric locus of the
P point’s positions, to which the DLM rotation singularities
correspond.

3.1.2. Translation Singularities

The translation singularities are the configurations that match
condition (26b).

From a kinematic point of view, the ui unit vector directions
are lines along which the platform translation is controlled by
the actuators, and is forbidden when the actuators are locked,
because the dot products ui ·Ṗ are assigned by eq. (20a), where
ωωω is equal to the null vector out of singular configurations.

From a geometric point of view, condition (26b) is verified,
when one of the following geometric conditions is verified.

(T1) The three parallelograms Ai1Ai2Bi2Bi1, i = 1, 2, 3, lie
on three parallel planes (Figure 6(a)). When this geo-
metric condition occurs, the platform can perform in-
finitesimal displacement along a direction perpendic-
ular to planes of the parallelograms. Configurations
matching this condition also match condition (R2) and
are both rotation and translation singularities.

(T2) Two out of the three parallelograms Ai1Ai2Bi2Bi1, i =
1, 2, 3, have the sides AijBij , j = 1, 2, parallel to the
line which is the intersection of the two planes of the
parallelograms. In this case, the four rods AijBij of the
two parallelograms are all parallel (Figure 6(b)) and
all the rods AijBij of the DLM are parallel to a sin-
gle plane (plane π in Figure 6(b)). When this condition
occurs, the platform can perform infinitesimal displace-
ment along the direction perpendicular to the plane the
rods AijBij are parallel to.

The actual occurrence of the additional translational DoF,
in some of the above listed geometric conditions, has been
observed in a prototype of the DELTA robot (Figure 1) by
Clavel (1988) and justified by static reasoning.

The unit vectors ui , i = 1, 2, 3, can be written as ex-
plicit functions of the coordinates of a platform point, e.g.,
P (Figure 2), and of the geometric parameters of the mech-
anism by solving the inverse position analysis of the DLM.
Thus, for a given geometry eq. (26b) is a scalar equation in
three unknowns: the coordinates of the platform point P . In
the Cartesian space of the platform positions, the geometric
representation of eq. (26b) is a fixed surface that is the geo-
metric locus of the P point’s positions, to which the DLM’s
translation singularities correspond.
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(a)

π

(b)

Fig. 6. Translation singularities: (a) the three parallelograms
Ai1Ai2Bi2Bi1, i = 1, 2, 3, lie on three parallel planes; (b) two
out of the three parallelograms Ai1Ai2Bi2Bi1, i = 1, 2, 3,
have the sides AijBij , j=1, 2, parallel to the line which is
the intersection of the two planes of the parallelograms.

3.2 Inverse Problem

If the platform linear velocity Ṗ is known, the signed intensi-
ties of the velocities Ȧi , i = 1, 2, 3, can be computed by using
eq. (20a), which is decoupled, where the solution of eq. (20b)
(i.e., ωωω = 0 out of rotation singularities) is substituted for ωωω.

The analysis of the ith eq. (20a) shows that the signed in-
tensity of the velocity Ȧi cannot be determined if and only if
the direction of the unit vector ui is perpendicular to the di-
rection of the velocity Ȧi . This geometric condition identifies
the inverse problem singularities. In the DELTA robot (Fig-
ure 1) the inverse problem singularities occur when one out
of the parallelograms Ai1Ai2Bi2Bi1, i = 1, 2, 3, degenerates
into a segment (geometric condition (R1)). In general, if the
directions of the velocities Ȧi , i = 1, 2, 3, are perpendicular
to the segments Ai1Ai2, i = 1, 2, 3, (Figure 3) respectively,
the inverse problem singularities will occur when geometric
condition (R1) is matched.

3.3. Relationships to be Used out of Singularity

If conditions (26) are not satisfied, systems (17) and (20) are
not singular, and the angular velocity, ωωω, and the angular ac-
celeration, ω̇, must be equal to zero. Therefore, system (20)
reduces to the following three equations (ωωω = 0)

ui · Ṗ = Ȧi · ui i = 1, 2, 3 (27)

and system (15) reduces to the following three equations
(ω̇ = 0)

ui · P̈ = Äi · ui − (Ṗ − Ȧi )
2

Li

i = 1, 2, 3 (28)

where Li indicates either of the lengths Li1 and Li2.
Equation (27) makes it possible to calculate the platform

translation velocity, Ṗ, as a function of the manipulator con-
figuration, that appears in the vectors ui , i = 1, 2, 3, and of the
velocities Ȧi , i = 1, 2, 3, that are imposed by the actuators.

On the other hand, eq. (28) makes it possible to compute
the platform acceleration, P̈, as a function of the manipulator
configuration, of the platform translation velocity, Ṗ, and the
inputs Ȧi and Äi , i = 1, 2, 3, that are imposed by the actuators.

4. Conclusions

In this paper the mobility analysis of a class of parallel transla-
tional manipulators derived from the DELTA robot has been
developed in full. The manufacturing and mounting condi-
tions that guarantee the pure translation of the platform have
been derived analytically. Moreover, it has been demonstrated
that these manipulators can assume singular configurations,
called rotation singularities, in which they are not able to im-
pose the platform translation any longer.

Finally, the geometric and analytic conditions that make it
possible to find all the singular configurations of these ma-
nipulators have been provided.
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