ME 115(a): The Classical Matrix Groups

The notes provide a brief review of *matrix groups*, with a particular focus on the "classical" matrix groups. The primary goal is to motivate the language and symbols used to represent rotations ($\mathbb{SO}(2)$ and $\mathbb{SO}(3)$) and spatial displacements ($\mathbb{SE}(2)$ and $\mathbb{SE}(3)$).

1 Groups

A group, G, is a mathematical structure with the following characteristics and properties:

- i. the group consists of a set of elements $\{g_j\}$ which can be indexed. The indices j may form a finite, countably infinite, or continous (uncountably infinite) set.
- ii. An associative binary group operation, denoted by '*', termed the *group product*. The product of two group elements is also a group element:

$$\forall g_i, g_j \in G$$
 $g_i * g_j = g_k, \quad where g_k \in G.$

- iii. A unique group identify element, e, with the property that: $e * g_j = g_j$ for all $g_j \in G$.
- iv. For every $g_j \in G$, there must exist an inverse element, g_j^{-1} , such that

$$g_j * g_j^{-1} = e.$$

Simple examples of groups include the integers, \mathbb{Z} , with addition as the group operation, and the real numbers mod zero, $\mathbb{R} - \{0\}$, with multiplication as the group operation.

1.1 The General Linear Group, GL(N)

The set of all $N \times N$ invertible matrices with the group operation of matrix multiplication forms the *General Linear Group* of dimension N. This group is denoted by the symbol GL(N), or $GL(N, \mathbb{K})$ where \mathbb{K} is a field, such as \mathbb{R} , \mathbb{C} , etc. Generally, we will only consider the cases where $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$, which are respectively denoted by $GL(N, \mathbb{R})$ and $GL(N, \mathbb{C})$. By default, the notation GL(N) refers to real matrices; i.e., $GL(N) = GL(N, \mathbb{R})$.

The identity element of GL(N) is the identify matrix, and the inverse elements are clearly just the matrix inverses. If matrix A is invertible (implying that $det(A) \neq 0$), then matrix A^{-1} is invertible as well. Note that the product of invertible matrices is necessarily invertible. This can be shown as follows. If matrices A and B are invertible (i.e. $A, B \in GL(N)$), then $det(A) \neq 0$ and $det(B) \neq 0$. Hence, $det(AB) = det(A) det(B) \neq 0$. Similarly, $det[(AB)^{-1}] = det[A^{-1}] det[B^{-1}] = (1/det(A)) (1/det(B)) \neq 0$. Thus, matrix which is formed from the product of two matrices is both invertible, and in GL(N).

2 Subgroups

A subgroup, H, of G (denoted $H \subseteq G$) is a subset of G which is itself a group under the group operation of G. Note that this subgroup must contain the identity element.

The General Linear Group has several important subgroups, which as a family make up the Classical Matrix Subgroups.

2.1 The Classical Matrix Subgroups

The Special Linear Group, $\mathbb{SL}(N)$, consists of all members of GL(N) whose determinant has a value of +1. To see that this set of matrices forms a group, note that if $A, B \in SL(N)$, then to show that $A * B \in SL(N)$, note that $det(AB) = det(A) \cdot det(B) = 1 \cdot 1 = 1$. Also, for any $A \in SL(N)$, $det(A^{-1}) = [det(A)]^{-1} = [1]^{-1} = 1$, so that every inverse is a member of $\mathbb{SL}(N)$.

The Orthogonal Group, $\mathbb{O}(N)$, consists of all real $N \times N$ matrices with the property that:

$$A^T A = I$$
 for all $A \in \mathbb{O}(N)$

(Note that this relationship and the group properties also implies that for any $A \in \mathbb{O}(N)$, $A A^T = I$ as well). As described in class, the group $\mathbb{O}(N)$ can represent spherical displacements in N-dimensional Euclidean space. To check that $\mathbb{O}(N)$ forms a group, note that:

- The product of two orthogonal matrices is an orthogonal matrix. Let $A, B \in \mathbb{O}(N)$. Then: $(AB)^T(AB) = B^T A^T A B = B^T B = I$, and thus the product AB is orthogonal.
- Recall that the inverse of an orthogonal matrix is the same as its transpose: $A^T = A^{-1}$ for all $A \in \mathbb{O}(N)$. Thus, since $A^T A = I$ for othogonal matrices, it is also true that the inverse of A, A^{-1} , is an orthogonal matrix: $[A^{-1}]^T A^{-1} = [A^T]^T A^T = A A^T = I$.

The Special Orthogonal Group, $\mathbb{SO}(N)$, consists of all orthogonal matrices whose determinants have value +1. To show that these matrices form a group, we can immediately apply the results from the analyses of $\mathbb{O}(N)$ and $\mathbb{SL}(N)$ above to further show that the product of matrices in $\mathbb{SO}(N)$ has determinant +1, and that the inverses of all matrices in $\mathbb{SO}(N)$ have determinant +1.

The Unitary Group, $\mathbb{U}(N)$, consists of orthogonal matrices with complex matrix entries: $\mathbb{U}(N) = \mathbb{O}(N,\mathbb{C})$. Note that in this case of complex valued matrices, the matrix transpose operation is replaced by the Hermitian operation (transpose and complex conjugation): $A^*A = I$ for all $A \in \mathbb{U}(N)$, where A^* is the transposed complex conjugate of A.

The Special Unitary Group, SU(N), consists of those unitary matrices with determinant having value +1.

The Special Euclidean Group, $\mathbb{SE}(N)$, consists of all rigid body transformations of N-dimensional Euclidean space which preserve the length of vectors (i.e., distances between points). Matrices in $\mathbb{SE}(2)$ describe planar rigid body displacements, while matrices in $\mathbb{SE}(3)$ describe spatial rigid body displacements. Matrices g in $\mathbb{SE}(N)$ take the form:

$$g = \begin{bmatrix} R & \vec{d} \\ \vec{0}^T & 1 \end{bmatrix}$$

where $R \in \mathbb{SO}(N)$, $\vec{d} \in \mathbb{R}^N$, and the vector $\vec{0}$ is an N-vector whose elements are identically zero. If \vec{p}_1 and \vec{p}_2 are two vectors in \mathbb{R}^n , and \vec{p}_1 , h and \vec{p}_2 , h are their homogeneous coordinates, then $g(\vec{p}_{2,h} - \vec{p}_{1,h})$ is a homogeneous vector equivalent to $R(\vec{p}_2 - \vec{p}_1)$, and $||R(\vec{p}_2 - \vec{p}_1)|| = ||(\vec{p}_2 - \vec{p}_1)||$

2.2 Some Simple Examples

- $\bullet \ GL(1) = \mathbb{R} \{0\}.$
- $\bullet \ GL(1,\mathbb{C}) = \mathbb{C} \{0\}.$
- $\mathbb{O}(1) = \{1, -1\}.$
- $\bullet \ \mathbb{SO}(1) = \{1\}.$
- $\mathbb{SU}(1) = \{e^{i\theta}\}, \text{ for all } \theta \in \mathbb{R}.$
- $\mathbb{SO}(2) = 2 \times 2$ matrices of the form:

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Note, the groups SO(2) and SU(1) are isomorphic because there is a one-to-one correspondence between every element in the two groups.