ME 115(b)

Parametrization of a C-obstacle Boundary

(revised version II)

1 Background

We have already looked at the problem of how to symbolically describe a portion (or "patch") of a c-obstacle boundary corresponding to a EV contact between a planar polygonal robot, \mathcal{A} , and a planar polygonal obstacle, \mathcal{O} . The goal of this handout handout is to choose a parametrization of the robot and obstacle geometries which can then be used to derive a concrete formula that describes the boundary of a c-obstacle due to an EV contact.

2 Parametrization

Figure 1: Parametrization of polygonal obstacle and polygonal robot

Figure 1 describes a parametrization of the robot and an obstacle. Note that one must choose a fixed observing reference frame, whose basis vectors are subscripted by R, and a reference frame fixed to the body of the moving robot, whose basis vectors are subscripted by A. We choose a parametrization with the following variables

• $\vec{r_i}$ is a vector from the origin of \mathcal{A} 's body fixed frame to the i^{th} vertex of \mathcal{A} , a_i .

- $||\vec{r_i}||$ is the Euclidean length of $\vec{r_i}$.
- By abuse of notation, let \vec{o}_j be a vector from the origin of the fixed observing frame to the j^{th} vertex of \mathcal{O} , o_j .
- $||\vec{o}_i||$ is the Euclidean length of \vec{o}_i .
- α_i is the angle between \vec{x}_A , the x-axis of the robot's body fixed frame and the vector \vec{r}_i .
- ϕ_i is the angle from \vec{x}_A to \vec{n}_i^A , the normal to the i^{th} edge of \mathcal{A} , E_i^A .
- β_j is the angle between \vec{x}_R (the x-axis of the fixed observing reference frame) and \vec{o}_j .
- ξ_j is the angle between \vec{x}_R and \vec{n}_i^O , the normal to the j^{th} edge of \mathcal{O}, E_i^O .

With these definitions, the basic vectors that are involved in the constraint equations are:

$$\vec{o}_j = ||\vec{o}_j|| \begin{bmatrix} \cos(\beta_j) \\ \sin(\beta_j) \end{bmatrix} \qquad \vec{r}_i = ||\vec{r}_i|| \begin{bmatrix} \cos(\alpha_i) \\ \sin(\alpha_i) \end{bmatrix} \tag{1}$$

$$\vec{n}_i^A(q) = \begin{bmatrix} \cos(\phi_i + \theta) \\ \sin(\phi_i + \theta) \end{bmatrix} \qquad \vec{n}_j^O = \begin{bmatrix} \cos(\xi_j) \\ \sin(\xi_j) \end{bmatrix}$$
(2)

3 The Constraint Equations in Parametrized Form

$$a_i(q) = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \vec{r_i} = \begin{bmatrix} x + ||\vec{r_i}||\cos(\alpha_i + \theta) \\ y + ||\vec{r_i}||\sin(\alpha_i + \theta) \end{bmatrix}$$
(3)

First constraint. First consider the constraint which ensures that vertex o_j lies on the line underlying the i^{th} edge of \mathcal{A} :

$$\vec{n}_i^A(q) \cdot (o_j - a_i(a)) = 0.$$
 (4)

Substituting in the variables from above, and performing some algebra results in the equation:

$$0 = -x\cos(\phi_i + \theta) - y\sin(\phi_i + \theta) + ||\vec{o}_j||\cos(\phi_i + \theta - \beta_j) - ||\vec{r}_i||\cos(\phi_i - \alpha_i).$$
(5)

This equation has the form:

$$A(\theta) x + B(\theta) y + C(\theta) = 0.$$
(6)

For a constant orientation (i.e., when the value of θ is fixed), Equation (6) represents a straight line in the *x-y* plane (i.e., a straight line in the contant orientation slice of c-space at level θ). Thus, the local "patch" of the configuration-space obstacle boundary is a *ruled*

surface, since this equation shows that the surface is bounded by a line whose orientation changes as a function of θ .

Second Pair of Constraints. Next we consider the pair of inequality constraints that insure that the robot and obstacle don't overlap:

$$\vec{n}_i^A(q) \cdot (\vec{o}_{j-1} - \vec{o}_j) \ge 0$$
 (7)

$$\vec{n}_i^A(q) \cdot (\vec{o}_{j+1} - \vec{o}_j) \ge 0$$
 (8)

Using the observation that:

$$(\vec{o}_{j-1} - \vec{o}_j) = ||E_{j-1}^O|| \begin{bmatrix} \cos(\xi_{j-1} - \pi/2) \\ \sin(\xi_{j-1} - \pi/2) \end{bmatrix}$$
(9)

Substituting the parametrized terms into Equation (7), and simplifying yields the equivalent constraint:

$$\cos(\phi_i + \theta - \xi_{j-1} + \pi/2) \ge 0 .$$
(10)

In general, for an angle γ to satisfy the equation $\cos \gamma \ge 0$, we require that $-\frac{\pi}{2} \le \gamma \pmod{2\pi} \le \frac{\pi}{2}$. Hence, Equation (10) is equivalent to

$$-\pi \le \phi_i + \theta - \xi_{j-1} \le 0 \pmod{2\pi}.$$
(11)

Note, for this equation, only the *lower* bound is physically meaningful for the geometry shown in Figure 1. Thus, constraint Equation (7) reduces to:

$$\xi_{j-1} - \phi_i - \pi \leq \theta \tag{12}$$

Similarly, using the observation that

$$(\vec{o}_{j+1} - \vec{o}_j) = ||E_j^O|| \begin{bmatrix} \cos(\xi_j + \pi/2) \\ \sin(\xi_j + \pi/2) \end{bmatrix}$$
(13)

Equation (8) can be rewritten as

$$\cos(\phi_i + \theta - \xi_j - \pi/2) \ge 0 \tag{14}$$

which is equivalent to

$$0 \le \phi_i + \theta - \xi_j \le \pi \pmod{2\pi}.$$
(15)

For this equation, only the upper bound is physically meaningful, and thus constraint Equation (8) reduces to:

$$\theta \le \pi + \xi_j - \phi_i \tag{16}$$

These two constraints can then be summarized as:

$$\theta \in [(\xi_{j-1} - \phi_i - \pi), (\xi_j - \phi_i + \pi)] \pmod{2\pi}$$
 (17)

Thus, these constraints bound the range of θ over which the local "patch" is defined. Note that the "mod 2π " modification applies to each of the upper and lower bounds.

Third pair of constraints. The final pair of inequality constraints bounds the vertex o_j to lie within the line segment E_i^A :

$$0 \le (o_j - a_i(q)) \cdot (a_{i+1}(q) - a_i(q)) \le ||E_i^A||^2 .$$
(18)

Substituting the parametrized expressions for o_j , $a_i(q)$, and $a_{i+1}(q)$ into this equation yields:

$$0 \leq x [||\vec{r}_{i}|| \cos(\alpha_{i} + \theta) - ||\vec{r}_{i+1}|| \cos(\alpha_{i+1} + \theta)]$$
(19)

$$+y [||\vec{r_i}||\sin(\alpha_i + \theta) - ||\vec{r_{i+1}}||\sin(\alpha_{i+1} + \theta)]$$
(20)

$$+ ||\vec{o}_{j}||||\vec{r}_{i+1}||\cos(\theta + \alpha_{i+1} - \beta_{j}) - ||\vec{o}_{j}||||\vec{r}_{i}||\cos(\theta + \alpha_{i} - \beta_{j})$$
(21)

$$-||\vec{r}_{i+1}||||\vec{r}_i||\cos(\alpha_i - \alpha_{i+1}) + ||\vec{r}_i||^2 \le ||E_i^A||^2 \quad .$$
(22)

These equations have the form:

$$0 \le D(\theta) \ x \ + \ E(\theta) \ y \ + \ F(\theta) \ \le ||E_i^A||^2 \tag{23}$$

where:

$$D(\theta) = [||\vec{r}_{i}|| \cos(\alpha_{i} + \theta) - ||\vec{r}_{i+1}|| \cos(\alpha_{i+1} + \theta)]$$

$$E(\theta) = [||\vec{r}_{i}|| \sin(\alpha_{i} + \theta) - ||\vec{r}_{i+1}|| \sin(\alpha_{i+1} + \theta)]$$

$$F(\theta) = + ||\vec{o}_{j}||||\vec{r}_{i+1}|| \cos(\theta + \alpha_{i+1} - \beta_{j}) - ||\vec{o}_{j}||||\vec{r}_{i}|| \cos(\theta + \alpha_{i} - \beta_{j})$$

$$- ||\vec{r}_{i+1}||||\vec{r}_{i}|| \cos(\alpha_{i} - \alpha_{i+1}) + ||\vec{r}_{i}||^{2}$$

3.1 Summary

The c-obstacle bounday patch defined by these constraint equations can thus be viewed as a ruled surface formed by sweeping a line segment (whose underlying line is given by Equation (6)) through the θ -range defined by Equation (5). The end points of the line segment can be determined as follows. One end of the line segment (for a given θ) occurs at the lower equality of Equation (23). Thus, this point can be found as the solution of the two linear equations

$$0 = Ax + By + C$$

$$0 = Dx + Ey + F$$

Similarly, the other end-point of the line segment (again, for a given θ) can be found from the upper inequality of Equation (23). That is, the other point (for fixed θ) is found by solving the linear equations:

$$0 = Ax + By + C$$
$$||E_i^A||^2 = Dx + Ey + F$$