ME 115(b): Final Exam, Spring 2005-06

Instructions

1. Limit your total time to 5 hours. That is, it is okay to take a break in the middle of
the exam if you need to ask me a question, or go to dinner, etc.

2. You may use any class notes, books, or other written material.
3. You may use mathematica or any software or computational tools to assist you.
4. Feel free to ask me or the T.A.s questions about the exam.

5. The final is due by 5:00 p.m. on the last day of the final period. If you need your grade
turned in to the registrar for purposes of graduation, then the final is due at 5:00 p.m.
on Wednesday, May 31.

6. The point values are listed for each problem to assist you in allocation of your time.

7. Please put all of your answers in a blue book, or carefully staple your work together
in the proper order.



Problem #1: (18 Points)

Consider the planar mechanism shown in Figure 1. This is a “geared” 6-bar mechanism
which I have recently used as a leg thrusting mechanism for a “hopping” robot. Note that
the spring is inconsequential for your analysis. The gears in this mechanism have the same
radius. That is, as one gear in a gear pair turns, the other gear rotates at the same angular
velocity, but opposite sense of direction.

1. What is the mobility of this mechanism?

2. Sketch the form of the structure/velocity equations (by “sketch”, I mean that I don’t
necessarily need the exact algebraic terms of every term in the structure equation, but
I do want to see the basic form of the equation. However, I'm happy to take the full
structure equation if you like!).

3. Physically describe the conditions under which this mechanism becomes singular, and
interpret it in light of the above derivations.

7777777777777777777777777777777777777777777

Figure 1: Planar 6-bar Geared Mechanism

Problem #2 (17 Points)

In class we discussed a variety of “redundancy resolution” techniques. One method which
we didn’t discuss is the “Augmented Jacobian” technique. In this method, one “augments”
the “task vector” by identifying additional “tasks” so that the resulting systems is no longer
redundant. For example, let @ be the location of the end-effector. =z is related to the
manipulator joint angles through the forward kinematics relationship:

—

T=f(0)

where @ is an n-vector of joint angles and ¥ represents the p independent end-effector coor-
dinates. One can define (n — p) additional “tasks”:

—

¢ = g(0)
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where qg is the (n —p) x 1 “augmented task vector.” For example, one might define elements
of ¢ as the orientation or elevation of interior links. Using the augmented task vector, one
can then define the “Augmented Jacobian” through the relationship:

7 J
q; = | ag(6)

(a) Describe the conditions under which the Augmented Jacobian loses rank.
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(b) Physically interpret each of the conditions in Part (a).

Problem #3 (20 Points): Special Configurations of “Slider-Crank” linkages.

Consider the “slider-crank” four bar linkage shown Fig. 2. This mechanism, which is com-
monly used as the piston mechanism in an internal combustion engine, consists of three
revolute joints and one prismatic joint. The joints are numbered successively, with the first
joint being at the left of the figure, and the fourth joint being the prismatic joint.

Revolute Joints

AN
NN
NS

1
|
1
1
1
I
'l
U
v/ N memee e

Figure 2: Slider Crank Mechanism

Part (a): One of the special configurations is obvious: the piston (or prismatic joint) is at
“top dead center,” and the cylinder comes momentarily to rest in this position. Show that
this configuration is indeed a special configuration. In particular, show that joint 4 has a

stationary configuration when 6; = 0 and 6, = 0.

Part (b): Develop an expression for the stationary configurations of joint 1. What are the
necessary conditions for joint 1 to have a stationary configuration?

Problem #4 (10 Points): parallel mechanisms

Figure 3(a) shows a planar “crossed” parallel mechanism. It consists of three active prismatic
joints and six passive revolute joints.

Part (c): Find and sketch the kinematic and actuator singular configurations of this

mechanism.
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Figure 3: (a) planar parallel mechanism with 3 active prismatic joints; (b) planar parallel
mechanism with 4 active prismatic joints.

Figure 3(b) is similar to Figure 3(a), except that it has an extra (or fourth) prismatic joint.
Such a mechanism is considered to be “overconstrained.”

Part (b): Can you describe some possible advantages and disadvantages that arise from
overconstraint. What are the singular configurations of this mechanism?

Problem #b5 (15 Points): (force closure)

A 3-dimensional body (such as an ellipsoid) is grasped by two fingers in an antipodal point
grasp (Figure 4). Let one of the contacts be modelled by the point contact with friction
model. Let the other contact be modelled by a soft finger contact.

Part (a): Sketch the structure of the grasp map for this grasp

Part (b): Is this grasp force closure? Justify your answer using one of the force closure

definitions.
Soft Finger Point Contact
Contact / with Friction

Figure 4: 2-fingered grasp of 3-dimensional Object

Problem #6 (20 Points): (Grasp and Rolling Contact)

One of the main motivations to study the contact equations was the realization that real
fingertips and grasped objects do not maintain a fixed contact point while they interact in
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the context of a grasp. In class (and in the MLS text), we derived the following kinematic
equations for a grasp involving multiple fingers (where each finger was a serial chain linkage,
with joint variables 6; = {0;1, 00, . . ., i, } for the i finger):

—

GT Vi = Ju(B)0 (1)

where G is the grasp map (assuming a fixed point of contact between the finger and the
object), Vpo is the velocity of the grasped object (as measured with respect to the “palm”
frame), Jp is the hand Jacobian, and 6 = [0 6L ... %] is the vector of all joint angles.

Equation (1) was derived assuming a “point-like” finger tip which did not roll or slide as
the object is manipulated. Now assume that the finger tip is a 3-dimensional surface (or a
curve in the case of planar fingers and object). How does Equation (1) change when the
point-finger assumption is replaced by the assumption of a curved fingertip that can roll on
the surface of the object?

If it simplifies your discussion and/or analysis, you can analyze the simpler case of planar
fingers and objects.



