
ME 115(a): Final Exam Solutions
(Winter Quarter 2005/2006)

Problem 1: (15 points)

The goal of this problem is two understand the possible motions of the object shown in
Figure 1. Define a fixed reference frame whose origin lies at the midpoint between the two
contact points, and whose y-axis aligns with the common line underlying the two contact
normals (see Figure 1. Intuitively, the two frictionless fingers can only apply forces along
the y-axis of the reference frame. Hence, the object should be able to instantaneously slide
along the x-axis, as well as rotate about the axis normal to the plane. We can show this
formally as follows.

Since the grasped object is restricted to move in the plane, it has 3 degrees of freedom
(DOF). All of its instantaneous motions can be expressed as a linear combination of three
independent 1-DOF motions. There is not a unique choice for the basis vectors of this three
dimensional set. Let us choose the basis vectors to be

$x =




1
0
0
0
0
0




$y =




0
1
0
0
0
0




$θ =




0
0
0
0
0
1




where $x represents a unit velocity along the x-axis, $y represents a unit velocity along the
y-axis and $θ represents a unit angular velocity about the axis orthogonal to the plane. Thus,
any velocity can be expressed as

V = cx$x + cy$y + cθ$θ =




cx
cy
0
0
0
cθ




The forces that can be applied to the object by the frictionless finger contacts can be ex-
pressed as the wrench:

W = f1




0
1
0
0
0
0




+ f2




0
−1
0
0
0
0




=




0
f1 − f2

0
0
0
0
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where fi > 0 is the magnitude of the force applied by the ith finger. The applied forces can
not stop instantaneous motions which are reciprocal to the applied wrenches. Note that $x

and $θ are both reciprocal to the wrench of the finger forces. Hence, the fingers can not stop
translations along the x-axis and rotations about the axis perpendicular to the plane.
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Figure 1: Schematic of two-fingered frictionless grasp

Problem 2: (15 points). The goal of this problem is to extract information about the
phystical rotation that is represented by this matrix:

R =



r11 r12 r13
r21 r22 r23
r31 r32 r33


 =




0.833333 −0.186887 0.52022
0.52022 0.583333 −0.623773

−0.186887 0.79044 0.583333


 .

Part (a): (7 points). Compute the axis of rotation and the angle of rotation. The angle of
rotation can be computed from the formula:

cosφ =
r11 + r22 + r33 − 1

2
=

0.833333 + 0.583333 + 0.583333 − 1

2
= 0.5

which yields solutions φ1 = cos−1(0.5) = 60o and φ2 = −φ1 = −60o. The x, y, and z
components of the unit vector axis of rotation can be found as:

ωx =
r32 − r23
2 sin(60o)

=
0.79044 + 0.623773

2 ∗ 0.866025
= 0.816496 (1)

ωy =
r13 − r31
2 sin(60o)

=
0.52022 + 0.0.186887

2 ∗ 0.866025
= 0.408248 (2)

ωz =
r21 − r12
2 sin(60o)

=
0.52022 + 0.186887

2 ∗ 0.866025
= 0.408248 (3)

Part (b): (4 points). The unit quarternion equivalent to this rotation is given by:

q = (a, b, c, d) = (cos(
φ

2
), ωx sin(

φ

2
), ωy sin(

φ

2
), ωz sin(

φ

2
))

= (0.866025, 0.408248, 0.204124, 0.204124) (4)
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Part (c): (4 points). The z-y-z Euler were calculated in the class notes. If the successive
angles are denoted ψ, φ, and γ, then:

cosφ = r33 ⇒ φ = cos−1(0.58333) = 54.3147o (5)

γ = Atan2[
r32

sin φ
,
−r31
sinφ

] = Atan2[0.973169, 0.23009] = 76.6967o (6)

ψ = Atan2[
r23

sin φ
,
r13

sinφ
] = Atan2[−0.767973, 0.640481] = −50.1723o (7)

Problem 3: (20 Points)

This problem asked you to look at the represention and manipulation of spatial displacements
using the concept of “dual numbers.” A dual number, ã, takes the form:

ã = ar + ε ad

where ar is the “real” part of the dual number and ad is the “dual” or “pure” part of the
dual number. The bases for the dual numbers are 1 and ε, and they obey the rules:

1 · 1 = 1
1 · ε = ε · 1 = ε
ε2 = 0

Part (a): (10 points)

1. g̃ will be orthogonal if g̃T g̃ = I.

g̃T g̃ = [R + ε(p̂R)]T [R + ε(p̂R)] = [RT − εRT p̂][R + εp̂R]

= RTR + εRT p̂R− εRT p̂R− ε2RT p̂2R

= I + εRT (p̂− p̂)R = I

2. Let g̃1 = [R1 + εp̂1R1] and g̃2 = [R2 + εp̂2R2]. Then:

g̃3 = g̃1g̃2 = [R1 + εp̂1R1][R2 + εp̂2R2]

= R1R2 + ε(R1p̂2R2 + p̂1R1R2) + ε2(p̂1R1p̂2R2)

= R1R2 + ε(R1p̂2R2 + p̂1R1R2)

Note that g3 = g1g2 is given by:

g3 =

[
R1R2 R1p2

− p
1

0
T

1

]

Hence, g̃3 = R1R2 + ε( ̂(R1p2 − p1)R1R2). Note that:

( ̂(R1p2
− p

1
)R1R2) = (R1p̂2R

T
1
− p̂1)R1R2

= R1p̂2R2 + p̂1R1R2

Hence, the two are equivalent.
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3. Let ξ̃1 = ω1 + εV 1 and ξ̃2 = ω2 + εV 2. Then:

ξ̃1ξ̃2 = (ω1 + εV 1) · (ω2 + εV 2)

= ω1 · ω2 + ε(V 1 · ω2 + ω1 · V 2) + ε2(V 1 · V 2)

= ω1 · ω2 + ε(V 1 · ω2 + ω1 · V 2)

The dual part is the reciprocal product.

Part(b): (5 points)

1. First note that if transformation g consists of rotation R and displacement p, then:

Adgξ =

[
R p̂R
0 R

] [
V
ω

]
=

[
RV + p̂Rω

Rω

]

The “dual” version of this vector is Rω + ε(RV + p̂Rω). But, g̃ξ̃ = R + ε(p̂R) and
ξ̃ = ω + εV . Hence:

g̃ξ̃ = (R + ε(p̂R))(ω + εV ) (8)

= Rω + ε(RV + p̂Rω) + ε2(p̂RV ) (9)

= Rω + ε(RV + p̂Rω) (10)

Thus, the two are equivalent.

2. Let ξ1 = [V
T

1
ωT

1
] and ξ2 = [V

T

2
ωT

2
]. Then:

ξ̃1 · ξ̃2 = (ω1 + εV 1) · (ω2 + εV 2) = ω1 · ω2 + ε(V 1 · ω2 + ω1 · V 2) + ε2(V 1 · V 2)

= ω1 · ω2 + ε(V 1 · ω2 + ω1 · V 2)

The dual part of this, V 1 · ω2 + ω1 · V 2, is the reciprocal product of ξ1 and ξ2.

Problem 4: (15 Points)

The geometry of this situation is recalled in Figure 2. S1 is perpendicular to the plane, P ,
and has zero pitch: h1 = 0. The screw axis of S2 lies in P , and S2 some non-zero pitch,
h2. The distance between S1 and S2, as measured along a mutually perpendicular line, is
denoted a. The goal of this problem is to describe the set of all screws whose axes lie in P
and that are reciprocal to both S1 and S2.

Assign a coordinate system whose origin is located at a point C, where the screw axis of
S1 intersects the horizontal plane, P , containing S2. Let the z-axis be collinear with the
positive S1 direction, and let the x-axis be collinear with the mutually perpendicular line
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Figure 2: Two Screws

between S1 and S2. In this coordinate system, the screw coordinates of S1 and S2 are:

ξ1 =

[
h1ω1 + ρ1 × ω1

ω1

]
=




0
0
0
0
0
1




ξ2 =

[
h2ω2 + ρ2 × ω2

ω2

]
=




0
h2

a
0
1
0




We require that any screw, SR, which is reciprocal to both S1 and S2 also lie in the plane
P . We can parametrize all screws that lie in P as follows:

ξR =
[
hRωR + ρR × ωR

]

where hR is the pitch of the reciprocal screw while ωR is a unit length vector collinear with
the screw axis of the reciprocal screw, ρR is a vector from the origin of the reference frame
described above to a point on the reciprocal screw axis. By assumption, both ωR and ρR

must also lie in P . We can describe any screw that lies in the plane by two scalars: d (the
distance along the mutually perpendicular line between S1 and SR) and θ, the angle between
the mutuallyperpendicular line and the x-axis of the reference coordinate system, which lies
in P . In terms of these scalars:

ωR =



− sin θ
cos θ

0


 ρR = d




cos θ
sin θ

0




and hence:

ξR =




−hR sin θ
hR cos θ

d
− sin θ
cos θ

0




5



If SR is reciprocal to S1, then the reciprocal product between these two screws must be zero.
Letting ◦ denote the reciprocal product,

ξ1 ◦ ξR = d = 0

This implies that the screw axis of SR must intersect the axis of S1. If SR is reciprocal to
S2, then:

ξ2 ◦ ξR = (h2 + hR) cos θ = 0.

Hence, SR must always intersect S1 and either have the negative pitch of S2, or it can have
any pitch if it is orthogonal to the axis of S2 (i.e. cos θ = 0).

Problem 5: (25 Points)

The “trick” to this problem is how to orient the manipulator in its “home” position in order
to make the analysis straightforward. See Fig. 3 for one appropriate way to do this. In this
case, it was necessary to redefine the positive direction of the third joint axis.

Figure 3: Schematic of PRR Manipulator in “home” position

Part (a) (Denavit-Hartenberg parameters): (5 points) Assuming the definitions shown in
Figure 3, the parameters are:

a0 = 0 α0 = 0 d1 = variable θ1 = 0
a1 = 0 α1 = −π

2
d2 = 0 θ2 = variable

a2 = 0 α2 = π
2

d3 = 0 θ3 = variable
a3 = L α3 = −π

2
d4 = 0 θ4 = 0

(11)

Part (b) (forward kinematics): (5 points) Using the Denavit-hartenberg approach:
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gS1 =




1 0 0 0
0 1 0 0
0 0 1 d1

0 0 0 1


 g12 =




cos θ2 − sin θ2 0 0
0 0 1 0

− sin θ1 − cos θ2 0 0
0 0 0 1


 (12)

g23 =




cos θ3 − sin θ3 0 0
0 0 −1 0

sin θ1 cos θ2 0 0
0 0 0 1


 g3T =




1 0 0 L
0 0 1 0
0 −1 0 0
0 0 0 1


 (13)

The total forward kinematics is:

gST = gS1 g12 g23 g3T = =




c2c3 −s2 c2s3 Lc2c3
s3 0 c3 Ls3

−s2c3 −c2 s2s3 d1 − Ls2c3
0 0 0 1


 (14)

where cj = cos θj, and sj = θj.

Part (c) (Jacobian matrix): (5 points)

The spatial Jacobian has the form:

J =
[
ξ1 ξ

′

2
ξ

′

3

]
(15)

where

ξ
′

2
= Ad

ed1ξ̂1
ξ2 (16)

ξ
′

3
= Ad

ed1ξ̂1
Ad

eθ2 ξ̂2
ξ

3
(17)

Recalling the form of a twist for a prismatic joint, and noting that d1 = 0 in the home
position, simple observation of Fig. 3, leads to:

ξ1 =

[
zS

0

]
=




0
0
1
0
0
0




ξ2 =

[
yS

0

]
=




0
0
0
0
1
0




ξ3 =

[
0
zS

]
=




0
0
0
0
0
1




(18)

Note that:

Ad
ed1ξ̂1

=




1 0 0 0 −d1 0
0 1 0 d1 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




Ad
eθ2ξ̂2

=




c2 0 s2 0 0 0
0 1 0 0 0 0

−s2 1 c2 0 0 0
0 0 0 c2 0 s2

0 0 0 0 1 0
0 0 0 −s2 0 c2




(19)
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Substitution of Eq.s (19) and (18) into Eq.s (16), (17), and (15) yields:

Js
ST =




0 −d1 0
0 0 d1 sin θ2
1 0 0
0 0 sin θ2

0 1 0
0 0 cos θ2




(20)

Part (d) (inverse kinematics): (10 points) Let (xD, yD, zD) denote the desired location of
the origin of the tool frame, with respect to th origin of the stationary frame. Let’s use the
algebraic approach for solving inverse kinematics. Of course, to use this method, it assumes
that you got the right equations in part (b) we know that:

xD = Lc2c3 (21)

yD = Ls3 (22)

zD = d1 − Ls2c3. (23)

From Eq. (22) we see that sin θ3 = yD

L
. Assuming that |yD/L| ≤ 1, we have that

θ3 = sin−1

[yD

L

]
. (24)

Two solutions for θ3 can be obtained from Eq. (24). The second solution, dubbed θ
′

3
, is

θ
′

3
= π − θ3. From Eq. (21) we have two θ2 solutions for each θ3 solution:

θ2 = cos−1

[
xD

L cos θ3

]
. (25)

The second solution is θ
′

2
= −θ2. Finally, from Eq. (23), we can solve for d1 for each given

(θ2, θ3) pair:
d1 = zD + L sin θ2 cos θ3.

Problem 6: (10 points)

Let p = [px py]
T denote the location of the pole of displacement. Let the displacement be

described by the homogeneous matrix g:

g =

[
R d

0
T

1

]
=




cos θ − sin θ dx

sin θ cos θ dy

0 0 1


 =

[
R d

0
T

1

]
. (26)

The homogeneous coordinates for the pole are: pH == [pT 1]T , where we know that the pole
has the special property that p = (I − R)−1d. A simple calculation shows:

gpH =

[
R d

0
T

1

] [
p
1

]
=

[
Rp+ d

1

]
=

[
R(I −R)−1d+ d

1

]
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Let’s simplify this term:

R(I − R)−1d+ d = [R(I −R)−1 + I]d

= [R(I −R)−1 + I](I −R)(I − R)−1d

= [R + I −R](I − R)−1d = (I − R)−1d

= p

Thus,

gpH = g

[
p
1

]
= pH .

To understand the properties of the other two eigenvectors/eigenvalues, note that the de-
terminant of g will always be +1. Since the determinant is equal to the product of the
eigenvalues, and since one eigenvalue has already been determined to be +1, it must be true
that the product of the remaining eigenvalues is also +1. Hence, the remaining eigenvalues
are either both real and reciprocal, or they are both complex conjugates. Note also that the
trace of g, which is equal to the sum of its eigenvalues, is always tr(g) = 1 + 2 cos θ, where
θ is the amount of rotation specified by g. If λ1 and λ2 denote these eigenvalues, then:

λ1 λ2 = 1
λ1 + λ2 = 2 cos θ

Hence, the eigenvalues are complex conjugates: e±jθ. The associated eigenvectors, which we
shall denote by e1 and e2, will generally be complex and conjugate. As we showed in class
for the case of SO(3), we can define two real vectors:

c1 =
e1 + e2

2
c2 =

j(e1 − e2)

2

The action of g on these vectors is equivalent to planar rotation.
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