ME 115(a): Final Exam (Winter Quarter 2007/2008)

Instructions

- 1. Limit your total time to 5 hours. That is, it is okay to take a break in the middle of the exam if you need to ask a question, or go to dinner, etc.
- 2. You may use any class notes, books, or other written material. You may not discuss this final with other class students or other people except me or the T.A..
- 3. You may use mathematica or any software or computational tools to assist you. However, if you find that your solution approach requires a lot of algebra or a lot of computation, then you are probably taking a less than optimal approach.
- 4. The final is due by 5:00 p.m. on the last day of finals.
- 5. The point values are listed for each problem to assist you in allocation of your time.

Figure 1: Two Screws

Problem 1: (15 points)

Consider the two screws, S_1 and S_2 , shown in Figure 1. S_1 is perpendicular to the plane, P, and has zero pitch: $h_1 = 0$. The screw axis of S_2 lies in P, and S_2 some non-zero pitch, h_2 . The distance between S_1 and S_2 , as measured along a mutually perpendicular line, is denoted a. Describe the set of all screws whose axes lie in P and that are reciprocal to both S_1 and S_2 .

Problem 2: (20 points)

We discovered numerous ways to represent and manipulate spatial displacements. Those crazy kinematicians have yet another variation on the same theme using something called "dual numbers." A dual number, \tilde{a} , takes the form:

$$\tilde{a} = a_r + \epsilon \ a_d$$

where a_r is the "real" part of the dual number and a_d is the "dual" or "pure" part of the dual number. The bases for the dual numbers are 1 and ϵ , and they obey the rules:

$$1 \cdot 1 = 1$$

$$1 \cdot \epsilon = \epsilon \cdot 1 = \epsilon$$

$$\epsilon^2 = 0$$

Dual numbers have many interesting properties, though we will only explore one aspect of their characteristics in this problem.

Part (a): (15 points). We can represent spatial displacements as "dual rotation matrices." That is, if a spatial displacement has the form:

$$g = \begin{bmatrix} R & \overline{p} \\ \overline{0}^T & 1 \end{bmatrix}$$

where $R \in SO(3)$ and $\overline{p} \in \mathbb{R}^3$, then the dual representation of the spatial displacement is:

$$\tilde{g} = R + \epsilon(\hat{p}R)$$

- 1. Show that \tilde{g} is an orthogonal matrix.
- 2. If g_1 and g_2 are spatial displacements, and \tilde{g}_1 and \tilde{g}_2 there dual equivalents, then show that $g_1 \ g_2$ and $\tilde{g}_1 \ \tilde{g}_2$ are equivalent.

Hint: in some ways of solving this problem, it might be useful to recall that if $A \in SO(3)$ and $\overline{v} \in \mathbb{R}^3$, then $(A\overline{v}) = A\hat{v}A^T$.

Part (b): (5 Points). We can also use dual numbers to represent twist coordinates. Let $\xi = [\overline{V}, \overline{\omega}]^T$ be a vector of twist coordinates. Its dual representation is $\tilde{\xi} = \overline{\omega} + \epsilon \overline{V}$. Show that

- 1. if g is a spatial displacement, and ξ is a twist, then $Ad_q\xi$ is equivalent to $\tilde{g}\tilde{\xi}$.
- 2. If ξ_1 and ξ_2 are two twists, then the dual part of dual dot product $\tilde{\xi}_1 \cdot \tilde{\xi}_2$ is equivalent to the reciprocal product of ξ_1 and ξ_2 . (Note, the real part of this product is called the "Klein product.").

Problem 3: (10 Points)

Consider the three jointed manipulator shown in Figure 2, which you already considered in a homework problem. This first two joints of this manipulator are revolute joints, while the third joint is a prismatic joint. The joint axes are parallel to each other.

Part (a): Find the hybrid Jacobian matrix of this manipulator.

Problem 4: (10 Points) Find the singularities of the manipulator analyzed in Problem 3.

Problem 5: (25 Points) The first three joints of the "armatron" manipulator (a toy sold by Radio Shack!) are shown in Figure 3

Part (a): (3 points) Determine the Denavit-Hartenberg parameters.

Part (b): (7 points) Using either the Denavit-hartenberg approach or the product-ofexponentials approach, determine the forward kinematics. That is, relate the coordinates of the origin of the tool frame to the joint angles.

Figure 2: Schematic of RRP Manipulator Geometry

Part (c): (15 points) Solve the inverse kinematics of this manipulator, assuming that the goal is to position the origin of the tool frame. You can use a geometric, algebraic, Paden-Kahan, or other approach.

Problem 6: (10 points)

Let g be a homogeneous transformation matrix representing the displacement of a planar rigid body:

$$g = \begin{bmatrix} R & \overline{d} \\ \overline{0}^T & 1 \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & d_x \\ \sin\theta & \cos\theta & d_y \\ 0 & 0 & 1 \end{bmatrix}$$
(1)

where R and $\overline{d} = [d_x \ d_y]^T$ respectively represent the rotation (by angle θ) and translation of the moving reference frame due to the displacement.

- a. Show that the pole of the displacement (in homogeneous coordinates) is an eigenvector of g with eigenvalue 1.
- b. (5 extra credit) describe the other two eigenvectors of g.

Figure 3: Schematic of Armatron Manipulator Geometry