
ME 115(a): Final Exam
(Winter Quarter 2009/2010)

Instructions

1. Limit your total time to 5 hours. That is, it is okay to take a break in the middle of
the exam if you need to ask a question, or go to dinner, etc.

2. You may use any class notes, books, or other written material. You may not discuss
this final with other class students or other people except me or the class Teaching
Assistants.

3. You may use Mathematica, MATLAB, or any software or computational tools to assist
you. However, if you find that your solution approach requires a lot of algebra or a lot
of computation, then you are probably taking a less than optimal approach.

4. The final is due by 5:00 p.m. on the last day of finals.

5. The point values are listed for each problem to assist you in allocation of your time.
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Problem 1: (20 points)

Consider the three screws, S1, S2, and S3, shown in Figure 1. All three screws are perpen-
dicular to a plane, P , and pass through the corners of an equilateral triangle (whose sides
have dimension d). Each of the three screws has zero pitch. Describe the set of all screws
which are simultaneously reciptrocal all three screws.

P

Equilateral Triangle

d

S1

S2

S3

Figure 1: Three Screws

Problem 2: (15 points)

We discovered numerous ways to represent and manipulate spatial displacements. Those
crazy kinematicians have yet another variation on the same theme using something called
“dual numbers.” A dual number, ã, takes the form:

ã = ar + ε ad

where ar is the “real” part of the dual number and ad is the “dual” or “pure” part of the
dual number. The bases for the dual numbers are 1 and ε, and they obey the rules:

1 · 1 = 1
1 · ε = ε · 1 = ε

ε2 = 0

Dual numbers have many interesting properties, though we will only explore one aspect of
their characteristics in this problem.

Part (a): (10 points). We can represent spatial displacments as “dual rotation matrices.”
That is, if a spatial displacement has the form:

g =

[
R p

0
T

1

]
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where R ∈ SO(3) and p ∈ R3, then the dual representation of the spatial displacement is:

g̃ = R + ε(p̂R)

1. Show that g̃ is an orthogonal matrix.

2. If g1 and g2 are spatial displacements, and g̃1 and g̃2 there dual equivalents, then show
that g1 g2 and g̃1 g̃2 are equivalent.

Hint: in some ways of solving this problem, it might be useful to recall that if A ∈ SO(3)

and v ∈ R3, then (̂Av) = Av̂AT .

Part (b): (5 Points). We can also use dual numbers to represent twist coordinates. Let
ξ = [V , ω]T be a vector of twist coordinates. Its dual representation is ξ̃ = ω + εV . Show
that

1. if g is a spatial displacement, and ξ is a twist, then Adgξ is equivalent to g̃ξ̃.

2. If ξ1 and ξ2 are two twists, then the dual part of dual dot product ξ̃1 · ξ̃2 is equivalent
to the reciprocal product of ξ1 and ξ2. (Note, the real part of this product is called the
“Klein product.”).

Problem 3: (25 Points) The first three joints of the “armatron” manipulator (a toy sold
by Radio Shack!) are shown in Figure 2

Joint 1

Joint 2

Joint 3

End-effector

Figure 2: Schematic of Armatron Manipulator Geometry

Part (a): (3 points) Determine the Denavit-Hartenberg parameters.

Part (b): (7 points) Using either the Denavit-hartenberg approach or the product-of-
exponentials approach, determine the forward kinematics. That is, relate the coordi-
nates of the origin of the tool frame to the joint angles.

Part (c): (15 points) Solve the inverse kinematics of this manipulator, assuming that the
goal is to position the origin of the tool frame. You can use a geometric, algebraic,
Paden-Kahan, or other approach.
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Problem 4: (17 points)

For the rotation matrix given below

R =

 0.833333 −0.186887 0.52022
0.52022 0.583333 −0.623773

−0.186887 0.79044 0.583333


Part (a): (8 points) Compute the axis of rotation and angle of rotation.

Part (b): (4 points) Determine the unit quaternion that is equivalent to this rotation.

Part (c): (5 points) What are the z-y-z Euler angles of this rotation?

Problem 5: (15 points)

Planar displacements can be represented as a combination of a translation by vector d =
[dx dy]

T and a rotation by angle θ, which could be also be represented by a 3×3 homogeneous
matrix of the form:

g =

cos θ − sin θ dx

sin θ cos θ dy

0 0 1

 (1)

Or, we also noted that every planar displacement was equivalent to a rotation about a “pole.”

Part (a): (7 points) Let a body-fixed reference frame attached to a rigid body be initially
in coincidence with the origin of a fixed reference observing frame. Let this body undergo
planar displacement by rotation of angle φ about a pole located at a distance p = [px pT

y from
the origin of the reference frame. Compute the 3 × 3 homogeneous transformation matrix
that describes this displacment (in terms of φ, px, and py).

We can also represent planar displacements using a special type of quaternion algebra knowns
as “planar quaternions.” The planar quaternion algebra has basis elements (1, iε, jε, k)
where:

• The product of basis elements i, j, k behave just like the quaternion basis elements.

• ε2 = 0.

• i, j, and k, commute with ε. E.g., iε k = ik ε = −jε and iε jε = ijε2 = 0.

Recall that in the case of unit quaternions, the quaternion coefficients can be identified
with the Euler parameters of a rotation, and thus unit quaternions can be used to represent
rotations.

Let a planar quaternion have the form:
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Z = Z4 + Z1iε + Z2jε + Z3k

where Z1, Z2, Z3, Z4 ∈ Rn. The coefficients of the planar quaternion can be identified with
the planar displacement parameters as follows:

Z4 = cos(φ
2
)

Z3 = sin(φ
2
)

Z2 = −px sin(φ
2
)

Z1 = py sin(φ
2
)

(2)

where p = [px py]
T is the pole of the planar displacement.

Part (b): (15 points)

Using your results from part (a), compute φ, dx, and dy in terms of Z1, Z2, Z3, and Z4.

Note: these results are useful because of the following facts, which you need not prove. Let
v = (x, y, 1) be a planar vector in homogeneous coordinates. This vector can be associated
with the “pure” planar quaternion:

v = (yiε − xjε + k).

If Z is a planar quaternion representing a planar displacement with parameters θ, dx, and
dy, then it can be shown that:

v
′
= ZvZ∗ = (x sin φ + y cos φ + dy)iε− (x cos φ− y sin φ + dx)jε + k (3)

and thus this operation is equivalent to:

v
′
=

[
cos φ − sin φ
sin φ cos φ

]
v +

[
dx

dy

]
Thus, planar quaternions are yet another means to represent planar displacements and co-
ordinate transformations.
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