Mathematica Primer

Version 1.0
29 September 1992

Richard M. Murray

Division of Engineering and Applied Science
California Institute of Technology
Pasadena, California 91125
murray@design.caltech.edu

© 1992, Richard M. Murray

Chapter 1: Mathematica Primer 1

1. Mathematica Primer

Mathematica is a comprehensive software system for mathematical computation.
Mathematica can be used to perform numerical calculations (including more than
400 functions), symbolic computations (polynomial factorization, power series ex-
pansion, etc.) and graphics (both two and three dimensional). The general reference
for Mathematica is the book Mathematica: A System for Doing Mathematics by
Computer by Stephen Wolfram.

1.1 Starting up Mathematica
Mathematica 2.0 is available on the following machines:

e CCO sun cluster: punisher, sandman; remote access via X11

CCO NeXT machines: most machines, notebook interface
e CCO Macintoshes: all machines, notebook interface

e Research machines: avalon and robby (limited processes)

See the CCO Reference Guide for up to date information on which versions of
Mathematica are available and on which machines.

To start Mathematica on Unix machines, use the command math. The response
should look something like:

Mathematica 2.0 for SPARC
Copyright 1988-91 Wolfram Research, Inc.
-- X11 windows graphics initialized --

In[1]:=

The prompt In[1]: is Mathematica’s way of asking for input. All input lines are
numbered for later recall. Output from Mathematica is preceded by the string
OQut [N] :, where N is the output line. For example, we can ask Mathematica to add
two numbers and print the result:

In[1]:= 647
Out[1]= 13
In[2]:=

Mathematica responds by printing the output and requesting a new line of input.

To exit from Mathematica, type Quit.

Chapter 1: Mathematica Primer 2

1.2 Numerical calculations

Numbers in mathematica can be either integers or floating point numbers. An
integer is represented as a sequence of digits without a decimal point. All integer
calculations are kept as integer calculations for as long as possible (this includes
ratios of integers). Floating point numbers are specified by using a decimal point:

17.
17.0

Exponents are specified by using standard mathematical operations; Fortran and C
floating point formats are not supported:

2 ¥ 10717
9.8 x 1075

Arbitrary precision arithmetic is supported, but machine precision floating point is
used by default to increase performance.

All of the standard arithmetic functions are supported by mathematica:

addition + division / grouping O
subtraction - exponentiation
negation - multiplication *

An important difference between Mathematica and most symbolic and programming
languages is that two expressions separated by white space are multiplied. Thus
ab is the same as a * b. This mimics the usual written notation, but can be
quite confusing for novices. This partially explains why Mathematica does not use
Fortran or C notation for floating point numbers. Mathematica interprets 10e-5
symbolically

In[2]:= 10e-5
Out[2]= -5 + 10 e
Notice that multiplication was implied even though no spaces were explicitly present.

Mathematica also provides over 400 mathematical functions. The arguments to a
Mathematica function are enclosed in square brackets. All mathematica functions
begin with capital letters

Sqrt[x] calculate the square root of x
Sin[x], Cos[x] trigonometric functions

To find out what a function does, type ?fcn. Wildcards are allowed, in case you
don’t know quite what you are looking for:

ArcCos ArcCot ArcCsc ArcSec ArcSech ArcSin ArcSinh ArcTan
ArcTanh ArcCosh ArcCoth ArcCsch

In[3]:= ?ArcCsch
ArcCsch[z] gives the inverse hyperbolic cosecant of the

Chapter 1: Mathematica Primer 3

complex number z.

Mathematica also supports the use of symbolic constants. The following constants
are available:

Pi pi, approx 3.1415

E e, approx 2.72

I imaginary unit Sqrt[-1]

Infinity positive infinity

ComplexInfinity infinite magnitude, undetermined phase

Constants are left in symbolic form for as long as possible (this preserves precision).
For example, 2 + Pi evaluates to 2 + Pi. To force a conversion to floating point
numbers, use the function N: N[x] converts x to a numeric expression (if possi-
ble). An optional argument allows the precision of the floating point number to be
specified:

In[3]:= 2 + Pi
OQut[3]= 2 + Pi
In[4]:= N[2 + Pi]
OQut[4]= 5.14159
In[5]:= N[2 + Pi, 40]

Out[5]= 5.141592653589793238462643383279502884197

1.3 Building up calculations

Mathematica has a history mechanism to allow previous results to be recalled and
reused:

A evaluates to the previous output
%n returns Out[n]

This mechanisms can be used to continue calculations from one line to the next.

In addition to the history mechanism, variables can be used to store the results of
calculations. The syntax for variable assignment is

variable = expression

This causes Mathematica to evaluate the expression to the right of the equals sign
and assign the resulting value to the variable. Once a variable is assign a value, it
can be used in expressions and will evaluate to its value:

In[6]:=x =5

Out[6]= 5

Chapter 1: Mathematica Primer 4

In[7]:=x + 9

Qut[7]= 14
Variable names can be any combination of letters and digits, as long as they start
with a letter. To suppress the output of a variable assignment, terminate the line

with a semicolon. Assigning a variable the value . clears the value of the variable.

Lists, vectors, matrices, and arrays are created in Mathematica using curly braces.
A list is just an ordered collection of elements. The elements may themselves be
lists or any other expression. This is used to create matrices and more complicated
arrays:

{a, b, c} a list of depth 1
{{a, b, c}, {d, e, f}} a list of depth 2 (matrix)

Matrices are entered by rows. The function MatrixForm can be used to print out a
matrix in row/column format:

In[8] := MatrixForm[{{a,b,c}, {d,e,f}}]
Out[8]//MatrixForm=a b c
d e f

To access the items of a list, double square braces are used (remember that single
square braces were used for functions).

list[[i]] ith element of a list
list[[i, j]] ith row, jth column
list[[iJ]1[[j]1] another way to get ith row, jth column

Mathematica does not require any structure within lists. The elements of a list
can be any expression, including other lists of different lengths. Of course, in order
to perform certain operations (such as matrix multiplication), the list must have a
certain structure.

1.4 Operations on lists

Most Mathematica functions operate on the individual elements of a list. This
property is called Listable.

Sqrt[{al, a2}] returns {Sqrt[al]l, Sqrtl[a2]}

{a1, a2} + {b1, b2} returns {al + bl, a2 + b2}

a * {al, a2} returns {a * bl, a * b2}

{a1, a2} * {b1, b2} returns {{al b1, al b2}, {a2 b1, a2 b2}}

Note that multiplication between lists gives the outer product.

Chapter 1: Mathematica Primer 5

Matrix and vector multiplication is implemented using the dot product operator,
represent by a period. The dot product between two vectors gives the usual inner
product. The dot product between a matrix and a vector is used for multiplying a
vector times a matrix. Similarly, the dot product between two matrices corresponds
to the usual matrix product. The dot product returns an error if the operands do
not have the proper dimensions.

vecl . vec2 returns a scalar
matl . vecl returns a vector (list)
matl . mat2 returns a matrix

1.5 Symbolic mathematics

The main power of mathematica is its ability to perform symbolic calculations. Vari-
ables which do not have values assigned to them can be manipulated symbolically
and later evaluated if desired. The following sequences illustrates some of these
capabilities:

In[6]:= f = (x+y)~3

3
Out[6]= (x + y)

In[7]:=x =5
Out[7]= 5
In[8] := Factor[f]

3
Out[8]= (5 + y)

Notice that £ replaces x with its current value but leaves y unevaluated.

Mathematica can solve symbolic equations and return a solution in terms of one or
more variables. For example, the quadratic formula, according to Mathematica is
given by

In[15]:= Solve[x"2 + b x + ¢ == 0, x]
2 2
-b + Sqrtlb - 4 c] -b - Sqrtlb - 4 c]
Qut[15]= {{x > ~——————-—— }, x> I
2 2

Mathematica can also perform symbolic differentiation and integration.

D[f, x] partial derivative of f with respect to x
Integratel[f, x] indirect integral of f with respect to x

Example:

Chapter 1: Mathematica Primer 6

D[x"2 + x, x] returns 2x + 1
D[Sin[x], x] returns Cos[x]
D[{x"2 + x, Sin[x]}, x] returns {2x + 1, Cos[x]}

1.6 Simplifying expressions

There are several functions available in mathematica for simplifying symbolic ex-
pressions:

Expand[expr] expand all products (x42)72 ==> x72 + 4x + 4
Factor[expr] factor products X2 4 4x + 4 --> (x+2)72
Simplify[expr] reduce to simplest possible form

Together[expr] put everything over a common denominator

Trigonometric expansions are performed by default in the Simplify[] function, but
not by other simplification functions. To enable trigonometric simplification, use the
Trig->True option:

Expand[expr, Trig->Truel

1.7 Defining functions

Mathematica allows you to extend the functions which are available by defining
your own. A function declaration in Mathematica is represented as a substitution
pattern. A simple function has the form

name[argl_, arg2_] := expr;

After the function is defined, whenever name[x,y] is encounted in an input expres-
sion, expr will be substituted with the values of x and y replacing occurrences of
argl and arg2. For example, the following function adds two expression together:

add[x_, y_] := x+y; define a new function
add[5, a] returns a+5h

Note that the underscores are used only on the left hand side of a function declara-
tion. This identifies the pattern for the function. Much more complex patterns can
be specified (see the Mathematica book).

Functions which evaluate a series of statements can also be specified by using the
Module statement:

namel[args...] :=
Module[
{localvarl, localvar2, ...},
statementl;

statementn

1;

Chapter 1: Mathematica Primer 7

Mathematica evaluates the expressions statementi, ..., statementn sequentially
and returns the value of the last expression. Note that there is no semicolon after
the last expression. The variables localvari, ..., localvari, can be used within
the body of the Module with disturbing their previous value (if any).

Internally, Mathematica treats a function definition as a rule. The name and ar-
gument list define a pattern which Mathematica uses when evaluating expressions.
All expression which match the pattern are replaced by the function definition, with
arguments substituted appropriately. Much more complex patterns can be used to
define functions which operator differently on different types of arguments or to de-
fine functions which have optional arguments with default values. Mathematica even
uses patterns to store values of symbols: when a symbol occurs in an expression, it
is replaced by the value of the symbol.

Mathematica has two types of assignment operators which are used to define pat-
terns. The immediate assignment operator, =, evaluates the right hand side of and
expression and assigns the resulting value to the symbol or pattern on the left hand
side. Most simple symbol assignments (such as x = 5) are done using immediate
assignment. The delayed assignment operator, :=, does not evaluate the right hand
side. This is appropriate for function definitions since we do not want to evaluate
the body of a function until the arguments are available. Occasionally there are
reasons to use delayed assignment for symbol definitions or immediate assignments
for function definitions. If you can’t think of any situations in which this might be
helpful, then you probably can use the assignment operators in the usual fashion.

1.8 Control statements

Mathematica has several functions which control the flow of execution and allow
iteration.

The If function allows conditional execution of statements:
If[condition, true-statement, false-statement, other-statement]

true-statement is executed if the condition evaluates to the symbol True, false-
statement is executed if the condition evalues to the symbol False, and other-
statement is executed in all other cases. Sequences of statements can be used in
the place of a single statement by separating the sequence with semicolons.

Several operators and functions are available which return logical values which can
be used as conditions:

a == b return True if a and b are identical

a > b a is numerically greater than b

exprl &% expr2 logical and

exprl || expr2 logical or

IntegerQ[expr] return True if expr is an Integer

Expressions which can not be evaluated to True or False are left unevaluated. Math-
ematica is somewhat finicky about comparing floating point numbers. For example
Pi == 3.14 will return unevaluated, but N[Pi] == 3.14 will return false.

Chapter 1: Mathematica Primer 8

Loops can be executed using the Do and While statements. The Do function executes
a sequence of statements using an iterator variable to control the number of times
that the loop is executed:

Do[statements, {i, imin, imax}]
If 1 occurs in statements, its current value is used.
The Table function can be used to create lists:
Table[expr, {i, imin, imax}]

Table returns a list with each element of the list evaluated for the current value of
i. This function is a much more efficient method of creating an array of values than
using a Do loop.

1.9 Programs

In addition to interactive operation, Mathematica commands can be executed out
of a file. This allows you to place a sequence of commands in a file for later use and
evaluation (very handy for homework sets). To read a set of commands from a file,
use the << operator:

<<file.m

By convention, files which contain Mathematica functions end in .m. Commands
executed from a file are not echoed on the terminal, even if they do not end with
a semicolon. The exception is the last command in the file, which is the "value" of
the expression <<file.m. (On the NeXT and Mac, the notebook front end provides
a somewhat different interface for including files.)

Several commands are useful when executing programs from a file:

Print[args...] evaluate args and display on terminal
(* comments *) user comments

Return[] return command to the terminal

Exit[] Exit from Mathematica

1.10 Plotting

Mathematica has a large array of graphics functions, including two- and three-
dimensional plots and animation. Options allow the graphs to be tailored to indi-
vidual needs. Graphs can be displayed on the screen or saved in a file (as PostScript)
and incorporated into documents.

Plotting a function in Mathematica is done use the Plot command. Plot accepts
two arguments: a function to be plotted and a range for the independent variable:

Chapter 1: Mathematica Primer 9

Plot[Sin[t] Cos[10t], {t, -2Pi, 2Pi}]

This command will cause the plot to be displayed on the screen. On most systems,
the plot remains on the screen until a mouse button is clicked inside the plot. Any
function can be plotted, as long as it evaluates to a numerical value when the
independent variable is replaced by a number.

The output from the Plot command is a graphics object. The graphics object is
Mathematica’s representation of the plot. Graphics objects can be redisplayed using
the Show command, which takes a graphics object as its argument. To save a plot
to a file, use the Display command:

Display["file.mps", Graphics]

The Display function will create a file which can be converted into the PostScript
graphics language. To convert the file into PostScript, use the psfix command from
the system command line. On unix systems, the appropriate command looks like:

psfix < file.mps > file.ps

The output from psfix is conforming PostScript and can printed on any PostScript
printer or included in a document.

A variant of the Plot command is the ParametricPlot command. The parametric
plot command displays the x and y coordinates of each point as a function of a third
parameter.

x = Cos[t] + 2 Cos[2t]
y = Sin[t] + 2 Sin[2t]
ParametricPlot[{x,y}, {t, -Pi, Pi}]

In addition to the Plot and ParametericPlot commands, the following other plotting
commands are available:

ContourPlot planar contour plots

DensityPlot shaded density plot

Plot3D three-dimensional surface plot

ListPlot plot data given as list of (x, y) coordinates

See the online documentation or the Mathematica reference manual for complete
descriptions.

1.11 Example #1: Jacobian of a mapping

To illustrate the power of Mathematica in defining symbolic functions, we define a
routine to calculate the Jacobian of a mapping. Given a function f(x) which maps
R"m to R™n, we wish to calculate the matrix of partial derivatives Df(x), a n x
m matrix. We will call this function Jac. It takes two arguments: a vector of n
expressions representing the function f and a list of m variable names.

Jac[f_, x_] :=

Chapter 1: Mathematica Primer 10

Table[

Table[D[£[[il], x[[jl1] 1, {j, Length[x1} 1,

{i, Length[f]}
1;

Sample usage:

In[2]:= Jac[{x1"2 + x2°3, Sin[x1]}, {x1,x2}]
2
Out[2]= {{2 x1, 3 x2 }, {Cos[x1], 0}}
In[3]:= MatrixForm[%]
Out[3]//MatrixForm= 2
2 x1 3 x2
Cos[x1] 0

1.12 Learning more

This primer only touches the bare basics of Mathematica usage. Some of the other
capabilities of Mathematica include:

Numerical Functions

Mathematica includes a full range of higher mathematical functions,
from elliptic integrals and complex Bessel functions to hypergeometric
surfaces and integer factorization.

Symbolic Computation

Graphics

Mathematica can do many kinds of algebraic operations, including fac-
toring, expanding, and simplifying polynomial and rational expressions.
It can find algebraic solutions to polynomial equations and systems of
equations. It can evaluate derivatives and integrals symbolically and
find symbolic solutions to ordinary differential equations. It can derive
and manipulate power series approximations and find limits.

Mathematica has a large array of graphics functions, including two-
and three-dimensional plots and animation. Options allow the graphs
to be tailored to individual needs. Graphs can be displayed on the
screen or saved in a file (as PostScript) and incorporated into documents.
Mathematica also allows simple animations to be created and executed.

Mathematica Packages

Collections of functions can be combined into libraries, called packages.
Standard Mathematica packages exist for performing a wide variety
of computations, including vector analysis and Laplace transforms (to
name two). Many functions are available for building packages including
debugging, help, and error facilities.

Other references

Chapter 1: Mathematica Primer 11

e Stephen Wolfram: Mathematica: A System for Doing Mathematics
by Computer, Second Edition (Addison-Wesley, 1991). The Math-
ematica reference.

e Nancy Blachman: Mathematica: A Practical Approach (Prentice-
Hall, 1991). A tutorial introduction to Mathematica.

e Roman Maeder: Programming in Mathematica (Addison-Wesley,
1989). A general introduction to Mathematica programming.

Appendix A: Exercises 12

Appendix A. Exercises

=W N

Find the indefinite integral of tan x.
Write a Mathematica function to calculate the factorial of an integer.
Write a function which returns True if a matrix is orthogonal.

Write a function to create a 2x2 rotation matrix given an angle of rotation (in
the plane).

Write a function which finds the angle of rotation corresponding to a 2x2 rota-
tion matrix.

Write a function zeroMatrix which computes a rectangular matrix of specified
dimensions filled with zeros.

Write a function which stacks the columns of a list of matrices together. Hint:
use the Join function.

Appendix B: A partial list of Mma functions 13

Appendix B. A partial list of Mma functions

This section lists a few of the functions which are available within mathematica.
The descriptions were extracted from the Mathematica online help utility.

/.

/;

Abs
Append
Array

Block

Constant

Debug

expr /. rules applies a rule or list of rules in an attempt to transform
each subpart of an expression expr.

patt /; test is a pattern which matches only if the evaluation of test
yields True. lhs :> rhs /; test represents a rule which applies only if the
evaluation of test yields True. lhs := rhs /; test is a definition to be
used only if test yields True.

lhs := rhs assigns rhs to be the delayed value of lhs. rhs is maintained in
an unevaluated form. When lhs appears, it is replaced by rhs, evaluated
afresh each time.

lhs = rhs evaluates rhs and assigns the result to be the value of lhs.
From then on, lhs is replaced by rhs whenever it appears. {l1, 12, ...} =
{r1, r2, ...} evaluates the ri, and assigns the results to be the values of
the corresponding li.

lhs == rhs returns True if lhs and rhs are identical.
lhs -> rhs represents a rule that transforms lhs to rhs.

<<name reads in a file, evaluating each expression in it, and returning
the last one. Get["name", key] gets a file that has been encoded with a
certain key.

a.b.c or Dot[a, b, c] gives products of vectors, matrices and tensors.
Abs[z] gives the absolute value of the real or complex number z.
Append[expr, elem] gives expr with elem appended.

Array[f, n] generates a list of length n, with elements f[i]. Array[f, {nl,
n2, ...}] generates an n1 X n2 X ... array of nested lists, with elements
flil, i2, ...]. Arrayl[f, dims, origin] generates a list using the specified
index origin (default 1). Array[f, dims, origin, h] uses head h, rather
than List, for each level of the array.

Block[{x, y, ...}, expr] specifies that expr is to be evaluated with local
values for the symbols x, y, Block[{x = x0, ...}, expr] defines initial
local values for x, Block[{vars}, body /; cond] allows local variables
to be shared between conditions and function bodies.

Constant is an attribute which indicates zero derivative of a symbol
with respect to all parameters.

Debug[expr] evaluates expr, allowing you to stop at certain points in
some control structures, and see what’s happening or run commands.
Debug[expr, {f1, f2, ...}] stops only in evaluation of the functions fi (and
everything they call).

Denominator

Det

Dimensions

Denominator[expr] gives the denominator of expr.
Det[m] gives the determinant of the square matrix m.

Dimensions[expr]| gives a list of the dimensions of expr. Dimen-
sions[expr, n] gives a list of the dimensions of expr down to level n.

Appendix B: A partial list of Mma functions 14

Display Display[channel, graphics] writes graphics or sound to the specified out-
put channel.

Do Do[expr, {imax}] evaluates expr imax times. Do[expr, {i, imax}] evalu-
ates expr with the variable i successively taking on the values 1 through
imax (in steps of 1). Do[expr, {i, imin, imax}] starts with i = imin.
Do[expr, {i, imin, imax, di}] uses steps di. Do[expr, {i, imin, imax},
{j, jmin, jmax}, ...] evaluates expr looping over different values of j,
etc. for each i. Do[] returns Null, or the argument of the first Return it
evaluates.

Eigenvalues
Eigenvalues[m] gives a list of the eigenvalues of the square matrix m.

Eigenvectors
Eigenvectors[m] gives a list of the eigenvectors of the square matrix m.

Expand Expand[expr] expands out products and positive integer powers in expr.
Expand[expr, patt] avoids expanding elements of expr which do not
contain terms matching the pattern patt.

False False is the symbol for the Boolean value false.

Flatten Flatten[list] flattens out nested lists. Flatten[list, n] flattens to level n.
Flatten[list, n, h] flattens subexpressions with head h.

For For[start, test, incr, body] executes start, then repeatedly evaluates
body and incr until test fails to give True.

Function Function[body] or body& is a pure function. The formal parameters are
(or #1), #2, etc. Function[x, body] is a pure function with a single
formal parameter x. Function[{x1, x2, ...}, body] is a pure function with
a list of formal parameters. Function[{x1, x2, ...}, body, {attributes}]
has the given attributes during evaluation.

IdentityMatrix
IdentityMatrix[n] gives the n X n identity matrix.

If If[condition, t, f] gives t if condition evaluates to True, and f if it eval-
uates to False. If[condition, t, f, u] gives u if condition evaluates to
neither True nor False.

In In[n] is a global object that is assigned to have a delayed value of the
nth input line.

Inverse Inverse[m] gives the inverse of a square matrix m.

Join Join[list1, list2, ...] concatenates lists together. Join can be used on any
set of expressions that have the same head.

LeafCount
LeafCount[expr] gives the total number of indivisible subexpressions in
expr.

Length Length[expr| gives the number of elements in expr.

LinearSolve
LinearSolve[m, b] gives the vector x which solves the matrix equation
m.x==b.

Listable Listable is an attribute that can be assigned to a symbol f to indicate

that the function f should automatically be threaded over lists that
appear as its arguments.

Appendix B: A partial list of Mma functions 15

MatrixForm

MatrixQ

Module

Not

NullSpace

Numerator

Out

MatrixForm(list] prints with the elements of list arranged in a regular
array.

MatrixQ[expr] gives True if expr is a list of lists that can represent a
matrix, and gives False otherwise. MatrixQ[expr, test] gives True only
if test yields True when applied to each of the matrix elements in expr.
Module[{x, y, ...}, expr] specifies that occurrences of the symbols x, y,
.. in expr should be treated as local. Module[{x = x0, ...}, expr] defines
initial values for x,

N[expr] gives the numerical value of expr. N[expr, n] does computations
to n-digit precision.

lexpr is the logical NOT function. It gives False if expr is True, and
True if it is False.

NullSpace[m] gives a list of vectors that forms a basis for the null space
of the matrix m.

Numerator[expr] gives the numerator of expr.

%n or Out[n] is a global object that is assigned to be the value produced
on the nth output line. % gives the last result generated. %% gives the
result before last. %%...% (k times) gives the kth previous result.

ParametricPlot

Part

Partition

Plot

Plot3D

Print
Product

ParametricPlot[{fx, fy}, {t, tmin, tmax}] produces a parametric plot
with x and y coordinates fx and fy generated as a function of t. Para-
metricPlot[{{fx, fy}, {gx, gy}, ...}, {t, tmin, tmax}] plots several para-
metric curves.

expr[[i]] or Part[expr, i] gives the ith part of expr. expr[[-i]] counts from
the end. expr[[0]] gives the head of expr. expr[[i, j, ...]] or Part[expr, i,
jy -] is equivalent to expr[[i]] [[J]] expr[[{il, i2, ...}]] gives a list of
the parts il, i2, ... of expr.

Partition[list, n] partitions list into non-overlapping sublists of length n.
Partition[list, n, d] generates sublists with offset d. Partition[list, {n1,
n2, ..}, {d1, d2, ...}] partitions successive levels in list into length ni
sublists with offsets di.

Plot[f, {x, xmin, xmax}] generates a plot of f as a function of x from
xmin to xmax. Plot[{f1, 2, ...}, {x, xmin, xmax}] plots several functions

fi

Plot3D[f, {x, xmin, xmax}, {y, ymin, ymax}| generates a three-
dimensional plot of f as a function of x and y. Plot3D[{f, s}, {x, xmin,
xmax}, {y, ymin, ymax}] generates a three-dimensional plot in which
the height of the surface is specified by f, and the shading is specified
by s.

Print[exprl, expr2, ...] prints the expri, followed by a newline (line feed).

Product[f, {i, imax}] evaluates the product of f with i running from 1
to imax. Product[f, {i, imin, imax}] starts with i = imin. Product][f,
{i, imin, imax, di}] uses steps di. Product[f, {i, imin, imax}, {j, jmin,
jmax}, ...] evaluates a multiple product.

Appendix B: A partial list of Mma functions 16

Quit
Return

Quit[] terminates a Mathematica session.

Return[expr| returns the value expr from a function. Return[| returns
the value Null.

SetAttributes

Simplify

Show

Solve

Table

Take

Times
Together

Transpose

Trig

True
TrueQ
VectorQ

Which

While

SetAttributes[s, attr] adds attr to the list of attributes of the symbol s.

Simplify[expr]| performs a sequence of algebraic transformations on expr,
and returns the simplest form it finds.

Show|[graphics, options] displays two- and three-dimensional graphics,
using the options specified. Show[gl, g2, ...] shows several plots com-

bined.

Solve[eqns, vars] attempts to solve an equation or set of equations for the
variables vars. Solveleqns, vars, elims] attempts to solve the equations
for vars, eliminating the variables elims.

Table[expr, {imax}] generates a list of imax copies of expr. Table[expr,
{i, imax}] generates a list of the values of expr when i runs from 1 to
imax. Table[expr, {i, imin, imax}] starts with i = imin. Table[expr,
{i, imin, imax, di}] uses steps di. Table[expr, {i, imin, imax}, {j, jmin,
jmax}, ...] gives a nested list. The list associated with i is outermost.
Take[list, n] gives the first n elements of list. Take[list, -n] gives the last
n elements of list. Take[list, {m, n}] elements m through n of list.

x*y*z or x y z represents a product of terms.

Together[expr] puts terms in a sum over a common denominator, and
cancels factors in the result.

Transpose[list] transposes the first two levels in list. Transposellist, {n1,
n2, ...}] transposes list so that the nk-th level in list is the k-th level in
the result.

Trig is an option for algebraic manipulation functions which specifies
whether trigonometric functions should be treated as rational functions
of exponentials.

True is the symbol for the Boolean value true.

TrueQ[expr] yields True if expr is True, and yields False otherwise.
VectorQ[expr] gives True if expr is a list, none of whose elements are
themselves lists, and gives False otherwise. VectorQ[expr, test] gives
True only if test yields True when applied to each of the elements in
expr.

Which[test1, valuel, test2, value2, ...] evaluates each of the testi in
turn, returning the value of the valuei corresponding to the first one
that yields True.

While[test, body] evaluates test, then body, repetitively, until test first
fails to give True.

