
The Planar Contact Equations

These notes derive the basic contact equations for planar bodies in “roll-slide” contact. These
equations are useful when analyzing the grasps of contacting planar bodies. They can also
be used to understand several issues in the operation of gears and the design of cams.

1 The Basic Setup

Figure 1 shows the basic set up for this problem. Assume that two bodies, labeled body
#1 and body #2, are in contact at a point P . Assume that body fixed reference frames
are defined for each body. Think of the boundary of each object as defining a closed planar
curve. Let s1 and s2 be the curve parameters for the boundaries of objects #1 and #1. s1

and s2 need not be arc-length parameters. Let ~p1(s1) and ~p1(s2) denote the functions that
describes the boundaries of the bodies in their respective object frames. We call the pair
(s1, s2) the contact parameters of this system.
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Figure 1: Geometry of contact planar bodies

Let d12 denote the position of the origin of body fixed frame #2 with respect to the origin
of frame #1. Similarly, let R12 denote the rotation matrix that described the orientation of
the second frame with respect to the first.

Recall that ∂~pi(si)/∂si is the tangent vector to the ith object at point si. Let Mi denote the
length of the tangent vector:

Mi(si) = ||
∂~pi(si)

∂si

|| (1)
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2 The Constraint Equations

We wish to consider relative motions of the two bodies such that they maintain contact.
There are three constraints that define an acceptable contact between the two bodies.

The point of contact constraint: The contact point on each object must be at the same
location with respect to a given coordinate frame. To an observer in the first coordinate
frame, the contact points can be equated as:

~p1(s1) = ~d12 + R12~p2(s2) (2)

The Normal Contact Constraint: The point contact constraint expressed above is not
sufficient to guarantee physically meaningful contact between the two bodies. In addition,
the surface normals, ~n1(s1) and ~n2(s2), of the two bodies must point in opposite directions:

~n1(s1) = −R12~n2(s2) (3)

The Tangent Constraint: Similary, the tangent vectors of each body must also point in
opposite directions:

~t1(s1) = −R12
~t2(s2) (4)

where ~t1(s1) and ~t2(s2) are the unit length tangent vectors to bodies 1,2. In terms of the
variables that we have introduced above, this equation can be expressed as:

M−1

1
(s1)

d~p1

ds1

(s1) = −M−1

2
(s2)R12

d~p2

ds2

(s2) (5)

3 An Expression for Curvature

Before proceeding, let’s determine an expression, in terms of the variable introduced above,
for the curvatures of the objects at the contact point. Let ρi be the “true” (but possibly
unknown) arc-length parameter for the curve that defines the boundary of the ith object.
Recall that in the arc-length parameterization,

d2~pi(ρi)

dρ2

i

= κi(ρi)~ni(ρi) =
d~ti(ρi)

dρi

where κi is the curvature of the ith body and ti is the unit tangent vector to the ith body at
the point of contact. Since ~ni is a unit length vector,

κi(ρi) = κi~ni · ~ni =
d~ti
dρi

· ~ni (6)

Recall that the normal and tangent vectors are orthogonal: ~ti ·~ni = 0. Taking the derivative
of this equation yields:

d~ti
dρi

· ~ni + ~ti ·
d~ni

dρi

= 0 (7)
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Making use of Equations 6 7, we find that:

κi = d~ti
dρi

· ~ni = −~ti ·
d~ni

dρi

= −M−1

i
d~pi

∂si

·
(

d~ni

dsi

dsi

dρi

)

= −M−2

i

(

d~pi

∂si

· d~ni

dsi

)

(8)

where it should be noted that dsi/dρi = M−1

i .

4 Detailed Derivation of the Contact Equations

The three contact constraint equations define complex nonlinear relationships between the
contact parameters (s1, s2) and the parameters describing the relative location of the two
bodies. Our goals is to related the change in the contact parameters, (ṡ1, ṡ2), to the relative
velocity of the two bodies. This relationship can be derived by taking the derivatives of the
contact constraints. The details are carried out below.

Differentiate the point contact and contact normal constraints (Equations 2 and 3) with
respect to time:

d~p1

ds1

ṡ1 = ~̇d12 + Ṙ12~p2 + R12

d~p2

ds2

ṡ2 (9)

d~n1

ds1

ṡ1 = −Ṙ12~n2 − R12

d~n2

ds2

ṡ2 (10)

Take the dot product of Equation 9 with d~p1/ds1 and solve for ṡ1:

ṡ1 = M−2

1

[

d~p1

ds1

·

(

~̇d12 + Ṙ12~p2 + R12

d~p2

ds2

ṡ2

)]

(11)

Substitute Equation 11 for ṡ1 into Equation 10:

d~n1

ds1

[

d~p1

ds1

·

(

~̇d12 + Ṙ12~p2 + R12

d~p2

ds2

ṡ2

)]

M−2

1
= −Ṙ12~n2 − R12

d~n2

ds2

ṡ2 (12)

Rearrange this equation to group all of the ṡ2 terms on the left side of the equality, and then
take the dot product of both sides of the equation with ~t1 = M−1

1

d~p1

ds1

:
[

M−1

1

d~p1

ds1

· (R12
d~n2

ds2

) + M−3

1

(

d~p1

ds1

· d~n1

ds1

)

d~p1

ds1

· (R12

d~p2

ds2

)
]

ṡ2

= −M−1

1

d~p1

ds1

· (Ṙ12~n2) − M−3

1

(

d~p1

ds1

· d~n1

ds1

)

d~p1

ds1

· ( ~̇d12 + Ṙ12~p2)
(13)

Let’s focus on the left hand side of this equation. Using Equation 5, the first term of the left
hand side can be rewritten as:

M−1

1

d~p1

ds1

· (R12

d~n2

ds2

) = −M−1

2

d~p2

ds2

·
d~n2

ds2

(14)
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The second term of the left hand side of Equation 13 can also be rewritten with the aid of
Equation 5:

M−3

1

(

d~p1

ds1

· d~n1

ds1

)

d~p1

ds1

· (R12

d~p2

ds2

) = −M−3

1

(

d~p1

ds1

· d~n1

ds1

)

M1M
−1

2

d~p2

ds2

· d~p2

ds2

)

= −M−2

1 M2

(

d~p1

ds1

· d~n1

ds1

) (15)

Hence, using the definition of curvature in Equation 8 and the results of Equations 14 and
15, the left hand side of Equation 13 can be expressed as:

−

[

M−2

2

d~p2

ds2

·
d~n2

ds2

+ M−2

1

(

d~p1

ds1

·
d~n1

ds1

)]

M2ṡ2 = (κ1 + κ2)M2ṡ2.

The right hand side of Equation 13 can also be simplified using the definition of curvature:

−M−1

1

d~p1

ds1

· (Ṙ12~n2) − M−3

1

(

d~p1

ds1

· d~n1

ds1

)

d~p1

ds1

· ( ~̇d12 + Ṙ12~p2)

= +M−1

1

[

−d~p1

ds1

· (Ṙ12~n2) + κ1

d~p1

ds1

· ( ~̇d12 + Ṙ12~p2)
]

With these simplifications, Equation 13 can be solved for ṡ2:

ṡ2 = (κ1 + κ2)
−1M−1

2
M−1

1

[

−
d~p1

ds1

· Ṙ12~n2 + κ1

d~p1

ds1

· ( ~̇d12 + Ṙ12~p2)

]

(16)

Let’s define the variables:

θ̇12 = M−1

1

d~p1

ds1

· (Ṙ12~n2) (17)

vt = M−1

1

d~p1

ds1

· ( ~̇d12 + Ṙ12~p2) (18)

Then, Equation 16 is simply:

ṡ2 = (κ1 + κ2)
−1M−1

2

[

−θ̇12 + κ1vt

]

(19)

Using Equations 5 and 19, Equation 11 can be expressed as:

ṡ1 = M−2

1

[

d~p1

ds1

·
(

~̇d12 + Ṙ12~p2 + R12

d~p2

ds2

ṡ2

)]

= M−2

1

[

d~p1

ds1

· ( ~̇d12 + Ṙ12~p2) − M2M
−1

1

(

d~p1

ds1

· d~p1

ds1

)

(κ1 + κ2)
−1M−1

2 (−θ̇12 + κ1vt)
]

= M−1

1 vt − M−1

1 (κ1 + κ2)
−1(−θ̇12 + κ1vt)

= M−1

1 (κ1 + κ2)
−1(θ̇12 + κ2vt)

(20)

Equations 20 and 19 are known as the contact equations:

ṡ1 = M−1

1 (κ1 + κ2)
−1(θ̇12 + κ2vt)

ṡ2 = M−1

2 (κ1 + κ2)
−1(−θ̇12 + κ1vt)

(21)

The quantity (κ1 + κ2) is known as the relative curvature.
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5 Interpretation of θ̇12 and vt

The physical interpretation of θ̇12 should be obvious: it is the angular velocity of body #2
with respect to body #1. However, to verify this, let’s evaluate the definition of θ̇12 in
Equation 17:

M−1

1

d~p1

ds1

· (Ṙ12~n2) = ~t1 · (Ṙ12R
T
12

R12~n2) = −~t1ω̂
s
12

~n1 = −θ̇12
~t1

[

0 −1
1 0

]

~n1 = θ̇12 (22)

where we have made use of Equation 3 and the fact that the tangent and normal vectors are
orthogonal.

To understand vt, let’s consider the velocity of the point P in body #2 that is in contact
with body #1:

~vP = ~̇d12 + Ṙ12~p2 = ~̇d12 + ω̂s
12

R12~p2

Note that

vt = M−1

1

d~p1

ds1

· ( ~̇d12 + Ṙ12~p2) = ~t1 · ~vP . (23)

Hence, vt is the projection, onto the tangent at the contact point, of the velocity of the point
in contact. It has the interpretation as the “sliding” velocity. If the second body “rolls” on
the first body with no sliding, then vt = 0.
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