
ME 115(a): Solution to Homework #1

Problem 1: Recall that the location of the pole is fixed in both the moving and observer
reference frames. Hence, before displacement, the pole is located at some position B~p as
seen by an observer in the fixed B frame. After displacement, the observer in the body fixed
C frame also sees the pole in his/her coordinates at point B~p. However, the moving body

has displaced relative to the fixed observer by amount D12 = (~d12, R12). But points in the
observer and displaced reference frames are related by a coodinate transform. Since the pole
is at the same location in both the fixed and moving frames, it must be true that:

B~p = ~d12 +R12
B~p.

This equation can be solved to find the pole location:

B~p = (I −R12)
−1~d12

Of course, you need to show the fact that (I−R12) is invertible. It will always be invertible,
except when R12 = I. In this case, the motion is a pure translation, and the pole is the
“pole at infinity.”

To find the pole of the displacement: D2 = (x, y, θ) = (1.0, 2.0, 30.0o), substitute into the
above results:

B~p = (I −R12)
−1~d12 =

[(

1 0
0 1

)

−

(

cos(30o) − sin(30o)
sin(30o) cos(30o)

)]−1 [

1.0
2.0

]

=

[

−3.23205
2.86603

]

You could report this result in Frame B, or transform the results to frame A.

A~p = ~d01 +R01
B~p =

[

1.0
3.0

]

+

(

cos(45o) − sin(45o)
sin(45o) cos(45o)

)[

−3.23205
2.86603

]

Problem 2: To show that a transformation is a pure rotation when viewed in a reference
frame at the pole, select a new reference frame, denoted byD, whose basis vectors are parallel
to Frame B and whose origin lies at the pole of the displacement. Let ~p denote the location
of the pole, as seen by an observer in Frame B. The location of Frame B relative to Frame
D is a pure translation of amount −1~p, and therefore, DDB = (−~p, I). The displacement
of the body from the first position to the second position, as now observed in Frame D, is
obtained by a similarity transform DDBD12D

−1

DB
:

DDBD12D
−1

DB
= (−~p, I)(~d12, R12)(−~p, I)−1 (1)

= (−~p, I)(~d12, R12)(+~p, I) (2)

= (−~p, I)((~d12 +R12~p), R12) (3)

= ((~d12 + (R12 − I)~p), R12) (4)
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Figure 1: Diagram of reflection process

Hence, if ~p = −(R12−I)−1~d12 = (I−R12)
−1~d12, then DDBD12D

−1

DB
= (~0, R12). I.e., as viewed

in reference Frame D, the displacement is a pure rotation by amount R12.

Problem 3:

Part (a): There are many ways that one can prove that reflections preserve length. Here
is one approach (see Figure 1).

Select any two non-identical points, A and B, in a rigid body. After reflection, those points
become A

′

and B
′

. Form the right triangle ABD, where the line BD is chosen to be
perpendicular to the line AA

′

. Similary, in the reflected body, form the right triangle A
′

B
′

D
′

.
Simple geometric arguments show that since the distance |BD| and |B

′

D
′

| are equal, and
the distances |AD| and |A

′

D
′

| are equal, then |AB| = |A
′

B
′

|. Hence, the distance between
A and B is preserved under reflection. Since A and B were chosen randomly, the result will
hold for any non-identical pair of points in the body. Thus, distance is always preserved
under reflection.

Part (b): Generally, physically meaningful planar displacements are not equivalent to a
single reflection. To see this, define three points (A,B,C) in the body of Figure 1. Because
the body is rigid, one can think of points (A,B,C) as forming a rigid triangle. Consider the
triangle formed from the reflected points (A

′

, B
′

, C
′

). Note that it is impossible physically
translate (A,B,C) to (A

′

, B
′

, C
′

). Finally, note that any rigid body planar displacement can
generally be realized as the result of two sequential reflections.
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Problem 4: You were to “prove” that a body undergoing spherical motion has three degrees
of freedom.

A body undergoing spherical motion has one fixed point. Let the body consist of N particles.
Let P1 denote the particle lying at the fixed point. A point in 3-dimensional Euclidean space
normally requires 3 independent variables to fix its location. However, since P1 does not
move, it actually has 0 degrees-of-freedom (DOF). Now consider a particle P2 in the body.
Particle P2 has 3 DOF as a particle. However, it is constrained to lie a fixed distance, d12

from particle P1 due to the fact that P1 and P2 are part of the same rigid body. The fixed
distance relationship imposes one constraint on P2. Next consider a point P3, which lie a
fixed distance from P1 and P2. Therefore, there are two constraints on its location. Now,
consider a particle P4. Since its must lie a fixed distance from P1, P2, and P3, there are three
constraints on its motion. Particles P5, . . ., PN similarly have 3 constraints.

The total number of degrees of freedom of the N particles are: 3(N − 1)+ 0 = 3N − 3. The
total number of constraints on these particles are: 1 + 2 + 3(N − 3) = 3N − 6. Hence, the
total net DOF of a body is the number of freedoms of the particles minus the number of
constraints that bind them into a rigid body: (3N − 3)− (3N − 6) = 3.
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