ME 115(a): Homework #2

(Due Wednesday, February 6, 2008)

Problem 1: (5 points) Consider the following rotation matrix:

0.866025	-0.353553	0.353553
0.353553	0.933013	0.0669873
-0.353553	0.0669873	0.933013

Find the axis of rotation and angle of rotation associated with this rotation.

Problem 2: (10 points) Can every orthogonal matrix be represented by a the exponential of a real matrix? That is, if $A \in \mathcal{O}(n)$, can A be represented by

$$A = e^C$$

for some real matrix C? (Hint: the determinant of e^{C} can be expressed as an exponential.)

Problem 3: (15 points) Let Z-X-Y Euler angles be denoted by ψ , ϕ , and γ . That is, successfully rotate a body about its body fixed z, x, and y axes by the angles ψ , ϕ , and γ .

- Part (a): Develop an expression for the rotation matrix that describes the Z-X-Y rotation as a function of the angles ψ , ϕ , and γ .
- Part (b): Given a rotation matrix of the form:

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

compute the angles ψ , ϕ , and γ as a function of the r_{ij} .

Problem 4: (10 points) Do Problem 4(a,b) in Chapter 2 of MLS.

Problem 5: (10 points) Do Problem 5 in Chapter 2 of MLS.

Problem 6: (10 points) Do Problem 10 (a,b) in Chapter 2 of MLS. Do not worry about the question of surjectivity in 10(b).