ME 115(a): Homework #2

(Due Monday, February 3, 2014)

Problem 1: (10 points) Can every orthogonal matrix be represented by the exponential of a *real* matrix? That is, if $A \in \mathcal{O}(n)$, can A be represented by

 $A = e^C$

for some real matrix C? (Hint: the determinant of e^C can be expressed as an exponential of a scalar.)

Problem 2: (15 points) Do Problem 4(a,b,c) in Chapter 2 of MLS. (*hint 1:* you can assume the solution to one part of the problem in solving the other parts.) (*hint 2:* for part (c), if you don't remember the definition of a vector space, you can look at Wikipedia, or see the optional handout on the course website entited "A Brief Introduction to Algebraic Systems.")

Problem 3: (5 points) Do Problem 5(c) in Chapter 2 of MLS.

Problem 4: (10 points) Do Problem 8(b,c) in Chapter 2 of MLS.

Problem 5: (5 points) Do Problem 10 (b) in Chapter 2 of MLS. Do not worry about the question of surjectivity.

Problem 6: (5 points) Consider the following rotation matrix:

0.866025	-0.353553	0.353553	
0.353553	0.933013	0.0669873	
-0.353553	0.0669873	0.933013	

Find the axis of rotation and angle of rotation associated with this rotation.