
ME 115(a): Solution to Homework #1
(Winter 2009/2010)

Solution to Problem 1: (10 points).

Let the 2× 1 vectors 1~v =
[
1v1

1v2

]T
and 2~v =

[
2v1

2v2

]T
have associated complex repre-

sentations 1ṽ = 1v1 + i 1v2 and 2ṽ = 2v1 + i 2v2 respectively (where i2 = −1). Recall that
the goal of this problem is to show that the complex number formula:

1ṽ = d̃12 + eiθ12 2ṽ . (1)

is equivalent to the planar coordinate transformation:

1~v = ~d12 + R(θ12)
2~v . (2)

Let’s evaluate the right hand side of expression (1) using the standard rules for multiplication
of complex numbers1:

d̃12 + eiθ12 2ṽ = (x + iy) + (cos θ12 + i sin θ12)(
2v1 + i 2v2)

= (x + 2v1 cos θ12 − 2v2 sin θ12) + i(y + 2v1 sin θ12 + 2v2 cos θ12) (3)

where we have used Euler’s formula (eiθ = cos θ + i sin θ). Matching the real and complex
portions of Equation (3) with the real and complex parts of 1ṽ in the left hand side of
Equation (1), we see that

1v1 = x +2 v1 cos θ −2 v2 sin θ (4)
1v2 = y +2 v1 sin θ +2 v2 cos θ . (5)

These equations are equivalent to

1~v = ~d12 +

[
cos θ12 − sin θ12

sin θ12 cos θ12

]
2~v (6)

Solution to Problem 2: (10 points) Recall that the location of the pole is fixed in both
the moving and observer reference frames. Hence, before displacement, the pole is located
at some position B~p as seen by an observer in the fixed B frame. After displacement,
the observer in the body fixed C frame also sees the pole in his/her coordinates at point
B~p. However, the moving body has displaced relative to the fixed observer by amount
D12 = (~d12, R12). But points in the observer and displaced reference frames are related by
a coodinate transform. Since the pole is at the same location in both the fixed and moving
frames, it must be true that:

B~p = ~d12 + R12
B~p.

1If ã = a1 + ia2 and b̃ = b1 + ib2, then ãb̃ = (a1b2 − a2b2) + i(a1b2 + a2b1).
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This equation can be solved to find the pole location:
B~p = (I −R12)

−1~d12

Of course, the matrix (I − R12) must be invertible,which will alwas be true except when
R12 = I. In this case, the motion is a pure translation, which is viewed as a rotation about
the “pole at infinity.”

B) In Frame B, the pole is located at: B~p = (I −R12)
−1~d12

C) In Frame C, the vector describing the pole has exactly the same value as seen by the

observer in Frame B: C~p = (I −R12)
−1~d12

A) In Frame A, the expression for the pole vector is obtained by a simple coordinate trans-

formation of the expression in Frame B: A~p = ~d01 + R01
B~p = ~d01 + R01(I −R12)

−1~d12

Problem 3:(5 points). To find the pole of the displacement: D2 = (x, y, θ) = (2.0, 2.0, 45.0o),
substitute into the above results:

B~p = (I −R12)
−1~d12 =

[(
1 0
0 1

)
−

(
cos(45o) − sin(45o)
sin(45o) cos(45o)

)]−1 [
2.0
2.0

]
=

[
1−

√
2

2

√
2

2

−
√

2
2

1−
√

2
2

]−1 [
2.0
2.0

]
=

[
−1.41421
3.4142

]
(7)

You could report this result in Frame B, or transform the results to frame A.

A~p = ~d01 + R01
B~p =

[
1.0
2.0

]
+

(
cos(30o) − sin(30o)
sin(30o) cos(30o)

) [
−1.414215

3.4142

]
(8)

=

[
−1.9319
4.2497

]
(9)

Problem 4: (15 points) To show that a transformation is a pure rotation when viewed
in a reference frame at the pole, select a new reference frame, denoted by D, whose basis
vectors are parallel to Frame B and whose origin lies at the pole of the displacement. Let ~p
denote the location of the pole, as seen by an observer in Frame B. The location of Frame
B relative to Frame D is a pure translation of amount −1~p, and therefore, DDB = (−~p, I).
The displacement of the body from the first position to the second position, as now observed
in Frame D, is obtained by a similarity transform DDBD12D

−1
DB:

DDBD12D
−1
DB = (−~p, I)(~d12, R12)(−~p, I)−1 (10)

= (−~p, I)(~d12, R12)(+~p, I) (11)

= (−~p, I)((~d12 + R12~p), R12) (12)

= ((~d12 + (R12 − I)~p), R12) (13)
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Hence, if ~p = −(R12−I)−1~d12 = (I−R12)
−1~d12, then DDBD12D

−1
DB = (~0, R12). I.e., as viewed

in reference Frame D, the displacement is a pure rotation by amount R12.

Problem 5: (15 points)

Part (a): There are many ways that one can prove that reflections preserve length. Here
is one approach (see Figure 1).

Figure 1: Diagram of reflection process

Select any two non-identical points, A and B, in a rigid body. After reflection, those points
become A

′
and B

′
. Form the right triangle ABD, where the line BD is chosen to be

perpendicular to the line AA
′
. Similary, in the reflected body, form the right triangle A

′
B

′
D

′
.

Because BB
′
D

′
D forms a rectangle, the distance |BD| and |B′

D
′| are equal. Consequently,

the distances |AD| and |A′
D

′| are equal, implying that |AB| = |A′
B

′|. Hence, the distance
between A and B is preserved under reflection. Since A and B were chosen randomly, the
result will hold for any non-identical pair of points in the body. Thus, distance is always
preserved under reflection.

Part (b): Generally, physically meaningful planar displacements are not equivalent to a
single reflection. To see this, select three non-colinear points (A, B, C) in the body of Figure
1. Because the body is rigid, one can think of points (A, B, C) as forming a rigid triangle.
Consider the triangle formed from the reflected points (A

′
, B

′
, C

′
). Note that it is impossi-

ble physically translate (A, B, C) to (A
′
, B

′
, C

′
). Finally, note that any rigid body planar

displacement can generally be realized as the result of two sequential reflections.
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