
ME 115(a): Solution to Homework #1
(Winter 2014)

Problem 1: Recall that the location of the pole is fixed in both the moving and observer
reference frames. Hence, before displacement, the pole is located at some position B~p as
seen by an observer in the fixed B frame. After displacement, the observer in the body fixed
C frame also sees the pole in his/her coordinates at point B~p. However, the moving body

has displaced relative to the fixed observer by amount D12 = (~d12, R12). But points in the
observer and displaced reference frames are related by a coodinate transform. Since the pole
is at the same location in both the fixed and moving frames, it must be true that:

B~p = ~d12 +R12
B~p.

This equation can be solved to find the pole location:

B~p = (I −R12)
−1~d12

Of course, you need to show the fact that (I−R12) is invertible. It will always be invertible,
except when R12 = I. In this case, the motion is a pure translation, and the pole is the
“pole at infinity.”

B) In Frame B, the pole is: B~p = (I −R12)
−1~d12

C) In Frame C, the vector describing the pole has exactly the same value as seen by the

observer in Frame B: C~p = (I −R12)
−1~d12

A) In Frame A, the expression for the pole vector is obtained by a simple coordinate trans-

formation of the expression in Frame B: A~p = d01 +R01
B~p = d01 +R01(I −R12)

−1~d12

Problem 2: To find the pole of the displacement, D2 = (x, y, θ) = (2.0, 3.0, 60.0o), substitute
into the above results:

B~p = (I −R12)
−1~d12 =

[(
1 0
0 1

)
−
(

cos(60o) − sin(60o)
sin(60o) cos(60o)

)]−1 [
2.0
3.0

]
=

[
1− 3

√
3

2√
3 + 3

2

]
You could report this result in Frame B, or transform the results to frame A.

Problem 3: To show that a transformation is a pure rotation when viewed in a reference
frame at the pole, select a new reference frame, denoted by D, whose basis vectors are parallel
to Frame B and whose origin lies at the pole of the displacement. Let ~p denote the location
of the pole, as seen by an observer in Frame B. The location of Frame B relative to Frame
D is a pure translation of amount −1~p, and therefore, DDB = (−~p, I). The displacement
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of the body from the first position to the second position, as now observed in Frame D, is
obtained by a similarity transform DDBD12D

−1
DB:

DDBD12D
−1
DB = (−~p, I)(~d12, R12)(−~p, I)−1 (1)

= (−~p, I)(~d12, R12)(+~p, I) (2)

= (−~p, I)((~d12 +R12~p), R12) (3)

= ((~d12 + (R12 − I)~p), R12) (4)

Hence, if ~p = −(R12−I)−1~d12 = (I−R12)
−1~d12, then DDBD12D

−1
DB = (~0, R12). I.e., as viewed

in reference Frame D, the displacement is a pure rotation by amount R12.

Problem 4: (problem 3(c) in chapter 2 of the MLS text). let

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 =
[
~r1 ~r2 ~r3

]
. (5)

Expanding det(R) using cofactors, one finds that:

det(R) = r11(r22r33 − r32r23) + r21(r32r13 − r12r33) + r31(r12r23 − r22r13)
= ~r1 · (~r2 × ~r3)

Problem 5: To find the geometry of the moving centrode of the elliptical trammel, place
a body fixed reference frame on the moving link so that its origin lies at the mid-point of
Points A and B, and its x-axis point in the direction from point A to point B. In Figure 1(a)
the basis vectors of this moving reference frame are denoted (~xb, ~yb). Let a fixed reference
frame (with basis vectors (~xf , ~yf )) be placed a the intersection of the two sliding joints.

To solve this problem, one must compute the location of the centrode as seen by an observer
in the moving frame. Let a = |AB|. Let θ denote the angle between the body-fixed x-
axis and the x-axis of the fixed reference frame. This angle also defines the angles of the
right-handed triangle ABP. Using the geometry of Figure 1(b), it can be seen that

δ = |BP| = a sin
(π

2
− θ
)

= a cos θ .

Similarly, from this diagram we can deduce that the x-coordinate of the centrode, denoted
u, is given by:

u =
a

2
− δ cos θ =

a

2
− a cos2 θ .

Likewise, the y-coordinate of the centrode in the moving frame, denoted v, is simply:

v = δ sin θ = a cos θ sin θ .
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Figure 1: (a): Diagram of the Elliptical Trammel. (b): Expanded and rotated view of (a),
showing the geometry of pole location in the moving coordinate system.

Thus, in the moving reference frame:

u2 + v2 = (a cos θ sin θ)2 +
(a

2
− a cos2 θ

)2
= a2(cos2 θ sin2 θ +

1

4
+ cos4 θ − cos2 θ)

= a2(
1

4
+ cos2 θ(sin2 θ + cos2 θ − 1))

=
(a

2

)2
Thus, the moving centrode (the set of pole locations in the moving reference frame) is a

circle with radius a
2

centered at the midpoint of ~AB.

Problem 6: You were to “prove” that a body undergoing spherical motion has three degrees
of freedom.

A body undergoing spherical motion has one fixed point. Let the body consist of N particles.
Let P1 denote the particle lying at the fixed point. A point in 3-dimensional Euclidean space
normally requires 3 independent variables to fix its location. However, since P1 does not
move, it actually has 0 degrees-of-freedom (DOF). Now consider a particle P2 in the body.
Particle P2 has 3 DOF as a particle. However, it is constrained to lie a fixed distance, d12
from particle P1 due to the fact that P1 and P2 are part of the same rigid body. The fixed
distance relationship imposes one constraint on P2. Next consider a point P3, which lie a
fixed distance from P1 and P2. Therefore, there are two constraints on its location. Now,
consider a particle P4. Since its must lie a fixed distance from P1, P2, and P3, there are three
constraints on its motion. Particles P5, . . ., PN similarly have 3 constraints.
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The total number of degrees of freedom of the N particles are: 3(N − 1) + 0 = 3N − 3. The
total number of constraints on these particles are: 1 + 2 + 3(N − 3) = 3N − 6. Hence, the
total net DOF of a body is the number of freedoms of the particles minus the number of
constraints that bind them into a rigid body: (3N − 3)− (3N − 6) = 3.
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