ME 115(a): Solution to Homework #1
(Winter 2014)

Problem 1: Recall that the location of the pole is fixed in both the moving and observer
reference frames. Hence, before displacement, the pole is located at some position P as
seen by an observer in the fixed B frame. After displacement, the observer in the body fixed
C frame also sees the pole in his/her coordinates at point Zp. However, the moving body

has displaced relative to the fixed observer by amount Dis = ((fm, R12). But points in the
observer and displaced reference frames are related by a coodinate transform. Since the pole
is at the same location in both the fixed and moving frames, it must be true that:

—

Pp= dya + Ry b
This equation can be solved to find the pole location:
Pp= (I - R12)_1j12

Of course, you need to show the fact that (I — Ry) is invertible. It will always be invertible,
except when R, = I. In this case, the motion is a pure translation, and the pole is the
“pole at infinity.”

B) In Frame B, the pole is: Zp = (I — R12)_ICZ;2

C) In Frame C, the vector describing the pole has exactly the same value as seen by the
observer in Frame B: 5 = (I — Ry3) " 'dp»

A) In Frame A, the expression for the pole vector is obtained by a simple coordinate trans-
formation of the expression in Frame B: 45 = do; + Roy B = do1 + Ro1(I — Ri2) " 'do

Problem 2: To find the pole of the displacement, Dy = (z,y,0) = (2.0, 3.0,60.0°), substitute
into the above results:

-1
B~ 1 _ poya7 {1 0\ [cos(60°) —sin(60°) 20 [1-38
P= = R diz = Ko 1 sin(60°)  cos(60°) 3.0/ ~ |VB+2
You could report this result in Frame B, or transform the results to frame A.

Problem 3: To show that a transformation is a pure rotation when viewed in a reference
frame at the pole, select a new reference frame, denoted by D, whose basis vectors are parallel
to Frame B and whose origin lies at the pole of the displacement. Let p’denote the location
of the pole, as seen by an observer in Frame B. The location of Frame B relative to Frame
D is a pure translation of amount —!'p, and therefore, Dpp = (—p, ). The displacement



of the body from the first position to the second position, as now observed in Frame D, is
obtained by a similarity transform Dp BDHDB}B:

—

DppDi2Dply = (=, 1)(di2, Raa) (=5, 1) " (1)
= (=7, 1)(dra, Rao) (+, 1) (2)

(=7, 1)((dr2 + Ri2p), Ri2) (3)

= ((diz + (Riz — I)P), Ru2) (4)

Hence, if p' = —(R12—I)*1J)12 = (I—ng)*lcag, then DDBDlgDB}B = (6, Ryy). Le., as viewed
in reference Frame D, the displacement is a pure rotation by amount Ris.

Problem 4: (problem 3(c) in chapter 2 of the MLS text). let

1 Ti2 T3
R = 91 T2 T3 = [’I"l T2 Tg] . (5)
31 T32 733

Expanding det(R) using cofactors, one finds that:

d€t<R) = 7”11(7’227“33 - 7”327”23) + 7“21(7”327“13 - 7‘127”33) + 7“31(7‘127”23 - 7”227’13)

= Fl (772 ng)

Problem 5: To find the geometry of the moving centrode of the elliptical trammel, place
a body fixed reference frame on the moving link so that its origin lies at the mid-point of
Points A and B, and its z-axis point in the direction from point A to point B. In Figure 1(a)
the basis vectors of this moving reference frame are denoted (7, 4;). Let a fixed reference
frame (with basis vectors (Zf,¢s)) be placed a the intersection of the two sliding joints.

To solve this problem, one must compute the location of the centrode as seen by an observer
in the moving frame. Let a = |AB|. Let € denote the angle between the body-fixed -
axis and the x-axis of the fixed reference frame. This angle also defines the angles of the
right-handed triangle ABP. Using the geometry of Figure 1(b), it can be seen that

d = |BP| = asin (g —0) =acosf .

Similarly, from this diagram we can deduce that the z-coordinate of the centrode, denoted
u, is given by:

u:g—écosezg—acoszé.

Likewise, the y-coordinate of the centrode in the moving frame, denoted v, is simply:

v=20sinf = a cosf sinf .
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Figure 1: (a): Diagram of the Elliptical Trammel. (b): Expanded and rotated view of (a),
showing the geometry of pole location in the moving coordinate system.

Thus, in the moving reference frame:

2
u? + 07 = (acos@sin@)Q—i-(%—acosQ@)

1
= a*(cos®fsin® 6 + 2 + cos* § — cos? 0)

1
= a2(zl + cos® §(sin® 0 + cos*  — 1))

an 2
- (%)

Thus, the moving centrode (the set of pole locations in the moving reference frame) is a

circle with radius § centered at the midpoint of AB.

Problem 6: You were to “prove” that a body undergoing spherical motion has three degrees
of freedom.

A body undergoing spherical motion has one fixed point. Let the body consist of N particles.
Let P, denote the particle lying at the fixed point. A point in 3-dimensional Fuclidean space
normally requires 3 independent variables to fix its location. However, since P; does not
move, it actually has 0 degrees-of-freedom (DOF). Now consider a particle P, in the body.
Particle P, has 3 DOF as a particle. However, it is constrained to lie a fixed distance, dis
from particle P, due to the fact that P, and P, are part of the same rigid body. The fixed
distance relationship imposes one constraint on . Next consider a point P3, which lie a
fixed distance from P; and P,. Therefore, there are two constraints on its location. Now,
consider a particle P;. Since its must lie a fixed distance from P;, P, and Pj, there are three
constraints on its motion. Particles Ps, ..., Py similarly have 3 constraints.



The total number of degrees of freedom of the N particles are: 3(N —1)+0 = 3N — 3. The
total number of constraints on these particles are: 1+ 2+ 3(N — 3) = 3N — 6. Hence, the
total net DOF of a body is the number of freedoms of the particles minus the number of
constraints that bind them into a rigid body: (3N —3) — (3N —6) = 3.



