ME 115(a): Solution to Homework #1
(Winter 2016)

Problem 1: Let the 2 x 1 vectors ¢ = [1111 1vg]T and 20 = [21)1 2v2}T have associated
complex representations 10 = vy 4+ vy and 20 = 2v; + i %0, respectively (where 72 = —1).
Recall that the goal of this problem is to show that the complex number formula:

L = dyg + €12 25 . (1)
is equivalent to the planar coordinate transformation:
117 = d12 + R(ng) 227 . (2)

Let’s evaluate the right hand side of expression (1) using the standard rules for multiplication
of complex numbers!:

dys + €92 25 = (z +dy) + (cos By +isinbi2)(Pvy + i 2vy)
= (24 *vicosbiy — Zvysinfyy) +i(y + *vysinfiy 4+ vycosfyy) (3)

where we have used Euler’s formula (e = cos@ + isinf). Matching the real and complex
portions of Equation (3) with the real and complex parts of o in the left hand side of
Equation (1), we see that

by = x+%v1cos0 —2 vysinf (4)
Yoy = y+2uvisinf +2 vy cosb . (5)

These equations are equivalent to

sinfy, cosbis

1 g |:COS 912 —sin 812:| 217 (6)
Problem 2: Recall that the location of the pole is fixed in both the moving and observer
reference frames. Hence, before displacement, the pole is located at some position Zp as
seen by an observer in the fixed B frame. After displacement, the observer in the body fixed
C frame also sees the pole in his/her coordinates at point ®. However, the moving body
has displaced relative to the fixed observer by amount Dis = ((j;g, Ry2). But points in the

observer and displaced reference frames are related by a coodinate transform. Since the pole
is at the same location in both the fixed and moving frames, it must be true that:

Pp=dis+ Ry Pp.
This equation can be solved to find the pole location:

Bﬁ: (I — R12)_1j12

f G = ay + ias and b = by + iby, then @b = (a1b2 — agbs) + i(a1bs + agby).



Of course, you need to show the fact that (I — Rys) is invertible. It will always be invertible,
except when Rjs = [. In this case, the motion is a pure translation, and the pole is the
“pole at infinity.”

B) In Frame B, the pole is: 5 = (I — ng)*lcflg

C) In Frame C, the vector describing the pole has exactly the same value as seen by the
observer in Frame B: “5 = (I — Ryp) tdo

A) In Frame A, the expression for the pole vector is obtained by a simple coordinate trans-
formation of the expression in Frame B: Aﬁ = d01 —+ R01 Bﬁ: d01 —+ R()l (I — R12>_1d12

Problem 3: To find the pole of the displacement, Dy = (x,y,6) = (2.0, 3.0,60.0°), substitute
into the above results:

= - rarda= (5 1) - (ol )] o] - [ ]
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You could report this result in Frame B, or transform the results to frame A.

Problem 4: To show that a transformation is a pure rotation when viewed in a reference
frame at the pole, select a new reference frame, denoted by D, whose basis vectors are parallel
to Frame B and whose origin lies at the pole of the displacement. Let p’denote the location
of the pole, as seen by an observer in Frame B. The location of Frame B relative to Frame
D is a pure translation of amount —!'p, and therefore, Dpp = (—p, ). The displacement
of the body from the first position to the second position, as now observed in Frame D, is
obtained by a similarity transform Dp BDHDB}B:

DppDiaDpyy = (=, 1)(dia, Rio) (=5, 1)~ (7)
(=5, 1)(dr2, Raz) (+5.1) (8)

(=7, 1)((d12 + Risp), Rus) 9)

= ((diz + (Riz — I)P), Ru2) (10)

Hence, if p= —(ng—I)_lcflg = (I—ng)_l(iu, then DppDisD5Y = (0, Rys). Le., as viewed
in reference Frame D, the displacement is a pure rotation by amount Ris.

Problem 5: To find the geometry of the moving centrode of the elliptical trammel, place
a body fixed reference frame on the moving link so that its origin lies at the mid-point of
Points A and B, and its z-axis point in the direction from point A to point B. In Figure 1(a)
the basis vectors of this moving reference frame are denoted (7, 4;). Let a fixed reference
frame (with basis vectors (Zf,¢s)) be placed a the intersection of the two sliding joints.

To solve this problem, one must compute the location of the centrode as seen by an observer
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Figure 1: (a): Diagram of the Elliptical Trammel. (b): Expanded and rotated view of (a),
showing the geometry of pole location in the moving coordinate system.

in the moving frame. Let a = |AB|. Let 6 denote the angle between the body-fixed a-
axis and the z-axis of the fixed reference frame. This angle also defines the angles of the
right-handed triangle ABP. Using the geometry of Figure 1(b), it can be seen that

d = |BP| = asin (g —8) =acosf .

Similarly, from this diagram we can deduce that the xz-coordinate of the centrode, denoted
u, is given by:

u:g—6c088:g—acos29.

Likewise, the y-coordinate of the centrode in the moving frame, denoted v, is simply:

v=20sinf =a cosf sinf .

Thus, in the moving reference frame:

2
u? +0? = (acos@sin9)2+<g—acos20>

1
= a*(cos® §sin® 0 + 1 + cos* § — cos? 0)
1
= GQ(Z + cos? (sin? @ + cos* 0 — 1))
an 2
- ()

Thus, the moving centrode (the set of pole locations in the moving reference frame) is a
circle with radius § centered at the midpoint of AB.



Problem 6: You were to “prove” that a body undergoing spherical motion has three degrees
of freedom.

A body undergoing spherical motion has one fixed point. Let the body consist of N particles.
Let P; denote the particle lying at the fixed point. A point in 3-dimensional Euclidean space
normally requires 3 independent variables to fix its location. However, since P, does not
move, it actually has 0 degrees-of-freedom (DOF). Now consider a particle P, in the body.
Particle P, has 3 DOF as a particle. However, it is constrained to lie a fixed distance, dis
from particle P, due to the fact that P, and P, are part of the same rigid body. The fixed
distance relationship imposes one constraint on P,. Next consider a point P3, which lie a
fixed distance from P; and P,. Therefore, there are two constraints on its location. Now,
consider a particle P,. Since its must lie a fixed distance from P, P, and P3, there are three
constraints on its motion. Particles Ps, ..., Py similarly have 3 constraints.

The total number of degrees of freedom of the N particles are: 3(N —1) +0 = 3N — 3. The
total number of constraints on these particles are: 1+ 2+ 3(N — 3) = 3N — 6. Hence, the
total net DOF of a body is the number of freedoms of the particles minus the number of
constraints that bind them into a rigid body: (3N —3) — (3N —6) = 3.



