ME 115(a): Solution to Homework #6

Problem #1:

Part (a): Using the Denavit-Hartenberg approach, the forward kinematics of this manipu-
lator are:

gsT = 9s5,191,292,393,T
where the matrices g; ;1 define the transformations between adjacent link frames. To sim-

plify things, we choose the tool frame to be parallel with the link frame of the third link,
but displaced a distance d, along the link frame z-axis. In this case:
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Inverse Kinematics: Since ds is variable, this manipulator is capable of reaching any
desired point pp = [zp yp zp|T within the workspace dictated by the mechanical limits of
the joints. Let psr denote the portion of the forward kineatics that describes the position
of the tool frame origin with respect to the stationary frame origin. Hence, we can find the
inverse kinematics by equating terms of psr with pp. First notice that:

[Psr||* = (ds + da)? = (2, + v} + 23)

Hence,
dy = —dy = (23 +yp + 2p)"/* (1)

We will denote the two possible solutions by d;f and d; . Next notice that (d3+dy) cosfs = zp
and (ds +dy)?sin? 0, = 24 + y%. Hence there are two solutions in 6, for a given choice of dj:

03 = cos[zp/(d3 + dy)]
I

However, there at not four possible solutions, since two of the solutions are the same. Hence,
there are two combinations of #; and dz. Finally, we can determine the value of #; from the
x and y components of psr:
COS 91 = m
sinf; = m
01 = Atan2[cos by, sin 6]
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There will be one 6 solution for each of the two (6, d3) pairs.

Part (b):

First, find the D-H parameters.

To find the forward kinematics using these parameters,
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where each g is given by:
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one must use the formula
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01, 02, and 05 will be the same as in part (a). We can also easily calculate Rgs (which we

got in part (a).)

Similarly,
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We’re interested in the inverse kinematics, so we want to know what combinations of angles will
give Rp (R desired) and dp (d desired). The inverse kinematics for position depend only on 61, 02
and 03 and thus are the same as in part (a). (This is because the "regional” part of this manipulator
is exactly the same as in part (a).)
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We know that Rgg=Rg1 Ri2 Ro3 R34 R4s Rs¢ and thus Rgg = Rg3 Rae.

Rgs is invertible,so Rgy =RE,
Ris = RLRp. (4)
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Setting this Ryg to the one in Equation 3 will give us expressions for 64, 05, and 6.
Problem 2: The hybrid Jacobian can be computed by first calculating the forward kinematics.
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The Hybrid Jacobian is defined as
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There exist singularities when the determinant of J equals zero.

0= det[JHTJH] = —lsl3(lacoshz + l3cos(f + 03))sinbs (5)
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This corresponds to two cases. The first is when 63 = 0 and 0 is anything. The other case is when 0 = 3

andfs=m.



