
ME 115(b): Solution to Homework #1

Solution to Problem #1:

To construct the hybrid Jacobian for a manipulator, you could either construct the body
Jacobian, J b

ST , and then use the body-to-hybrid velocity transformation:

Jh
ST =

[
RST 0
0 RST

]
J b

ST

or recall that the columns of the hybrid Jacobian take the form:

Jh
ST =

∂~pST

∂θ1

∂~pST

∂θ2
· · · ∂~pST

∂θN

~ω1 ~ω2 · · · ~ωN

 (1)

where the forward kinematics equations gST (~θ) take the form:

gST (~θ) =

[
RST (~θ) ~pST (~θ)

~0T 1

]
and ~ωj is:

~ωj =

(
∂RST

∂θj

RT
ST

)∨

.

This solution will use the second approach.

Manipulator (ii): While this manipulator has a rather odd geometry, it is relatively
straightforward to tackle this problem by suitable choices of geometry in the Denavit-
Hartenburg approach. If β is the angle between the first and third joint axes when the
manipulator lies in the configuration shown in the book, and if l1 and l2 are the two link
lengths as shown in the book’s figure, then the D-H parameters for this manipulator are:

a0 = 0 α0 = 0 d1 = 0 θ1 = variable
a1 = 0 α1 = π

2
d2 = 0 θ2 = variable

a2 = l1 cos β α2 = −π
2

d3 = (l1 + l2) sin β θ3 = variable
a3 = l2 cos β α3 = 0 d4 = 0 θ4 = 0

where we have assumed that the tool frame z-axis is parallel to joint axis 3. Recalling the
the relationship between link frames in terms of the D-H parameters:

gi,i+1 =


cos θi+1 − sin θi+1 0 ai

sin θi+1 cos αi cos θi+1 cos αi − sin αi −di+1 sin αi

sin θi+1 sin αi cos θi+1 sin αi cos αi di+1 cos αi

0 0 0 1


1



The forward kinematics of this mechanism can be found as:

gST = gS,1 g1,2 g2,3 g3,T

=


c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1




c2 −s2 0 0
0 0 1 0
−s2 −c2 0 0
0 0 0 1




c3 −s3 0 a2

0 0 −1 −d3

s3 c3 0 0
0 0 0 1




1 0 0 a3

0 1 0 0
0 0 1 0
0 0 0 1

 (2)

=

(c1c2c3 − s1s3) −(c1c2s3 + s1c3) c1s2 (a3c1c2c3 + a2c1c2 + d3c1s2 − a3s1s3)
(s1c2c3 + c1s3) (−s1c2c3 + c1c3) s1s2 (a3s1c2c3 + a2s1c2 + d3s1s2 + a3c1s3)

−s2c3 s2s3 c2 (−a3s2c3 − a2s2 + d3c2)


Following Equation (1), the hybrid Jacobian is:

Jh
ST =


∂~pST

∂θ1

∂~pST

∂θ2

∂~pST

∂θ3(
∂RST

∂θ1
RT

ST

)∨ (
∂RST

∂θ2
RT

ST

)∨ (
∂RST

∂θ2
RT

ST

)∨
 (3)

=

[
~v1 ~v2 ~v3

~ω1 ~ω2 ~ω3

]
where:

~v1 =

(−a3s1c2c3 − a2s1c2 − d3s1s2 − a3c1s3)
(a3c1c2c3 + a2c1c2 + d3c1s2 − a3s1s3)

0


~v2 =

(−a3c1s2c3 − a2c1s2 + d3c1c2)
(−a3s1s2c3 − a2s1s2 + d3s1c2)

(−a3c2c3 − a2c2 − d3s2)

 ~v3 =

(−a3c1c2s3 − a3s1c3)
(−a2s1c2s3 + a3c1c3)

(a3s2s3)


[
~ω1 ~ω2 ~ω3

]
=

0 −s1 c1s2

0 c1 s1s2

1 0 c2



Manipulator (iv): This is the “Stanford Manipulator”. Recall from a previous homework
solution that the Denavit-Hartenberg parameters and the forward kinematics are:

a0 = 0 α0 = 0 d1 = 0 θ1 = variable
a1 = 0 α1 = π

2
d2 = 0 θ2 = variable

a2 = 0 α2 = −π
2

d3 = variable θ3 = 0 (constant)
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gST = gS,1g1,2g2,3g3,T (4)

=


c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1




c2 −s2 0 0
0 0 1 0
−s2 −c2 0 0
0 0 0 1




1 0 0 0
0 0 −1 −d3

0 1 0 0
0 0 0 1

 (5)

=


c1c2 −s1 c1s2 d3c1s2

s1c2 c1 s1s2 d3s1s2

−s2 0 c2 d3c2

0 0 0 1

 =

[
RST (θ1, θ2, d3) ~pST (θ1, θ2, d3)

~0T 1

]
(6)

Following Equation (1), the hybrid Jacobian is:

Jh
ST =

[ ∂~pST

∂θ1

∂~pST

∂θ2

∂~pST

∂d3(
∂RST

∂θ1
RT

ST

)∨ (
∂RST

∂θ2
RT

ST

)∨ (
∂RST

∂θ2
RT

ST

)∨] (7)

(8)

=


−d3s1s2 d3c1c2 c1s2

d3c2s2 d3s1c2 s1s2

0 −d3s2 c2

0 −s1 0
0 c1 0
1 0 0

 (9)

Solution to Problem #2:

To find the singularities of the regional part (just the first three joints) of the elbow manipu-
lator, one can determine the conditions under which the Jacobian matrix of the manipulator
loses rank. While one could use any Jacobian, for simplicity we will use the Hybrid Jacobian
matrix. You could either recall from the class note (or derive) the forward kinematics of the
Elbow manipulator:

gST (~θ) =

[
RST (~θ) pST (~θ)

~0T 1

]

=


c1c23 −s1 c1s23 c1(l2c2 + l3c23)
s1c23 c1 s1s23 s1(l2c2 + l3c23)
−s23 0 c23 −(l2s2 + l3s23)

0 0 0 1

 (10)

where cj = cos(θj), sj = sin(θj), cij = cos(θi + θj), sij = sin(θi + θj), etc. Recall that the
hybrid Jacobian for the regional part of a manipulator is defined as:

Jh
ST =

[
∂~pST

∂~θ

]
(11)
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and thus substituting Equation (10) into Equation (11) yields:

Jh
ST =

−s1(l2c2 + l3c23) −c1(l2s2 + l3s23) −l3c1s23

c1(l2c2 + l3c23) −s1(l2s2 + l3s23) −l3s1s23

0 −(l2c2 + l3c23) −l3c23

 . (12)

Singularities will occur when the determinant of Jh
ST is zero:

det(Jh
ST ) = −l2l3[l2 cos(θ2) + l3 cos(θ2 + θ3)] sin(θ3)

The singularities occur when:

• θ3 = 0. In this case, the arm is fully “streteched out,” and thus this singular configu-
ration corresponds to the manipulator’s outer workspace limit.

• θ3 = ±π. In this case, the arm is folded back on itself, and this singular configuration
corresponds to the manipulator’s inner workspace boundary.

• l2c2 + l3c23 = 0. Note from the forward kinematics equations that in this case, x and y
coordinates of the tool frame origin lie at x = 0 and y = 0. This occurs when the tool
frame origin is placed anywhere along the first joint axis.

Solution to Problem #3:

Part (a): From Problem 1 above we know that “regional” forward kinematics that relates
the joint variables (θ1, θ2, d3) of the Stanford manipulator to the Cartesian location of the
tool frame origin is:

~pST =

x
y
z

 =

d3c1s2

d3s1s2

d3c2

 (13)

where ~pST =

x
y
z

T

is the location of the tool frame origin. The inverse kinematic solution

can be derived by simple algebraic manipulation of these kinematic relationships.

1. Step #1: x2 + y2 + z2 = d2
3 → d3 = ±

√
x2 + y2 + z2. There are two solutions

to this equation. In practice, one of these solutions will almost certainly be infeasible
from a mechanical point of view.

2. Step #2: x2 + y2 = d2
3s

2
2 → s2 = ±

√
x2+y2

x2+y2+z2 . There are 4 possible solutions to

this equation. For each different of the two possible d3 solutions there are two different
θ2 solutions.
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3. Step #3: From the forward kinematics, we have that:

cos θ1 =
x

d3 sin θ2

; sin θ1 =
y

d3 sin θ2

; (14)

from which we can get the unique solution:

θ1 = Atan2[
y

d3 sin θ2

,
x

d3 sin θ2

] . (15)

There is a single θ1 solution for each (θ2, d3) combination.

Part (b): This problem is most readily solved by realizing that manipulators with wrists
have a unique forward kinematic (and therefore inverse kinematic) solution structure. Note
that a wrist is defined as a serial kinematic chain of three revolute joints whose joint axes all
intersect at a single point, which we will term the “wrist center.” The wrist center will also
be the origin of the references frames (as defined by the Denavit-Hartenberg convention) of
those links that make up the wrist. Let the form of the forward kinematic relationship be
denoted by:

gST =

[
RST (θ1, . . . , θ6) ~pST (θ1, . . . , θ6)

~0T 1

]
=

[
RD

ST ~pD
ST

~0T 1

]
(16)

where RD
ST and ~pD

ST are the desired orientation and position of the tool frame. Let g6,T denote
the location of the tool frame relative to the Denavit-Hartenberg reference frame of link 6
(whose origin will lie at the wrist point). g6,T is a constant transformation that accounts for
any difference in the location of the tool relative to the link frame. The desired position and
orientation of link frame 6 will thus be:

gD
S,6 =

[
RD

ST ~pD
ST

~0T 1

] [
R6,T ~p6,T

~0T 1

]−1

=

[
RD

S,6 ~pD
S,6

~0T 1

]
. (17)

Note that the forward kinematics formula which describes the origin of Link frame 6 (the
wrist center point) is only a function of (θ1, θ2, d3), and is in fact the formula used in part
(a) of this problem. Thus, (θ1, θ2, d3) can be found from part (a), using ~pD

S,6 is the desired
position of the wrist center point.

Note that the forward kinematics relationship that describes the orientation of link frame 6
is:

RD
S,6 = RD

S,T R−1
6,T = RS,1(θ1) R1,2(θ2) R2,3 R3,4(θ4) R4,5(θ5) R5,6(θ6). (18)

But (θ1, θ2, d3) have already been determined by the placement of the wrist point at its desired
location. Hence, we can rearrange Equation (18) to isolate the unknown joint variables
(θ4, θ5, θ6):

R3,4(θ4) R4,5(θ5) R5,6(θ6) = (RS,1R1,2R2,3)
−1RD

S,T R−1
6,T . (19)

All of the terms on the right hand side of Equation (19) are known from the inverse kinematic
problem state, the knowledge of g6,T , and the inverse kinematic solution of the regional
structure.
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Note that the general form of the rotation matrix using the Denavit-Hartenberg convention
is:

Ri−1,i =

 cos θi − sin θi 0
sin θi cos αi−1 cos θi cos αi−1 − sin αi−1

sin θi sin αi−1 cos θi sin αi−1 cos αi−1

 (20)

For the Stanford manipulator, one choice1 of the twist angles for the wrist substructure is:
α3 = −π/2, α4 = π/2, α5 = −π/2. Hence:

R3,4 =

 c4 −s4 0
0 0 1
−s4 −c4 0

 R4,5 =

c5 −s5 0
0 0 −1
s5 c5 0

 R5,6 =

 c6 −s6 0
0 0 1
−s6 −c6 0

 (21)

and therefore:

R3,4R4,5R5,6 =

 (c4c5c6 − s4s6) −(c4c5s6 + s4c6) −c4s5

s5c6 −s5s6 c5

−(s4c5c6 + c4s6) (s4c5s6 − c4c6) s4s5

 (22)

Let the entries constant matrix RD
3,6 = (RS,1R1,2R2,3)

−1 RD
S,T R−1

6,T have the form:

RD
3,6 =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 .

Equating terms, we can see that:
cos θ5 = r23

which has two solutions. Using these solutions, we see that:

θ4 = Atan2[
r33

sin θ5

,
−r13

sin θ5

]

θ6 = Atan2[
−r22

sin θ5

,
r21

sin θ5

]

Hence, the wrist has two independent solutions, for each of the four different solutions to
the regional structure inverse kinematics, yielding 8 different inverse kinematic solutions.

1any other choice of twist angles that satisfy the D-H convention will differ only in the signs of these
angles
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