
ME 115(a): Solution to Homework #2

Problem 1: Find the axis of rotation and angle of rotation associated with the following
rotation matrix:  0.866025 −0.353553 0.353553

0.353553 0.933013 0.0669873
−0.353553 0.0669873 0.933013

 .

Let the matrix entries be denoted aij, where i = 1, 2, 3 denotes the row, and j = 1, 2, 3
denotes the column. From class notes or the text:

cos(φ) =
a11 + a22 + a33 − 1

2
=

0.866025 + 0.933013 + 0.933013− 1.0

2
= 0.8660245

where φ is the angle of rotation. Thus, φ = cos−1(0.8660245) = 30o. Thus, sin(φ) = 0.5, and
therefore:

sx =
a32 − a23

2 sinφ
= 0.0 (1)

sy =
a13 − a31

2 sinφ
= 0.707106 (2)

sz =
a21 − a12

2 sinφ
= 0.707106 (3)

Problem 2: Can every orthogonal matrix be represented by the exponential of a real matrix?

You should have either remembered or derived the fact that det(eC) = etr(C), where tr(C) is
the trace of determinant C. Note that if tr(C) is real, than etr(C) is always a positive number
and therefore orthogonal matrices with determinant -1 can not be represented as a matrix
exponential. This arises from the fact that the Orthogonal Group is a disconnected group.
That is, the matrices with +1 determinant are all connected to each other, and similarly the
ones with -1 determinant. But, the two subsets are disjoint.

Note, that if tr(C) = iπ (where i2 = −1), then det(eC) = eiπ = cos(π) + i sin(π) = −1.
However, tr(C) can not assume the value of iπ if C is real. Recall that the trace of a matrix
is equal to the sum of its eigenvalues. Let C be a n × n matrix. If n is even, then all of
the eigenvalues of C must be complex conjugates, or an even number of real roots. Thus,
the sum of the eigenvalues must be real. Similarly, if n is odd, the eigenvalues will either
be complex conjugates and/or an odd number of real eigenvalues. Thus, the sum of the
eigenvalues must also be real number. Thus, if C is a real matrix (as specified in part (a)),
then eC can not represent orthogonal matrices with determinant -1.

Problem 3: Let Z-X-Y Euler angles be denoted by ψ, φ, and γ.
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• Part (a): Develop an expression for the rotation matrix that describes the Z-X-Y
rotation as a function of the angles ψ, φ, and γ.

Rotation about the z-axis by angle ψ can be represented by a rotation matrix whose
form can be determined from the Rodriguez Equation:

Rot(~z, ψ) = I + sinψẑ + (1− cosψ)ẑ2 =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 .

Using the Rodriguez equation, the rotations about the y-axis and x-axis can be simi-
larly found as:

Rot(~x, φ) =

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 Rot(~y, γ) =

 cos γ 0 sin γ
0 1 0

− sin γ 0 cos γ

 .

Multiplying the matrices yields the result:

R(ψ, φ, γ) = Rot(~z, ψ) Rot(~x, φ) Rot(~y, γ)

=

(cψ cγ − sψ sφ sγ) −sψ cφ (cψ sγ (cψ sγ + sψ sφ cγ)
(sψ cγ + cψ sφ sγ) cψ cφ (sψ sγ − cψ sφ cγ)

−cφ sγ sφ cφ cγ

(4)

where cφ and sφ are respectively shorthand notation for cosφ and sinφ, etc.

• Part (b): Given a rotation matrix of the form:

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 (5)

compute the angles ψ, φ, and γ as a function of the rij.

Direct observation of the matrices in Equations (4) and (5) show that:

sinφ = r32 .

Because sin(π − φ) = sinφ, there are two solutions to this equation: φ1 = sin−1(r32),
and φ2 = π − φ1. Similar matchings of the matrix components yield:

ψ = Atan2[
r22

cosφ
,
−r12
cosφ

]

γ = Atan2[
r33

cosφ
,
−r31
cosφ

]

where the value φ1 or φ2 is used consistently
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Problem 4: Problem 4(a,b) in Chapter 2 of MLS

Part (a): Let’s assume that the statement in part (b) of the problem is true. Let ~w be a
3× 1 vector and let ~v be any 3× 1 vector. Then:

(RŵRT )~v = Rŵ(RT~v)
= R(~w × (RT~v))
= (R~w)× (RRT~v)
= (R~w)× ~v

= ̂(R~w)~v

Since this must be true for any vector ~v, then RŵRT = (R~w)ˆ.

Part (b): We can now assume that part (a) holds.

(R~v)× (R~w) = (̂R~v)(R~w)
= (Rv̂RT )(R~w)
= Rv̂RTR~w
= R(v̂ ~w)
= R(~v × ~w)

Problem 5: Problem 5 in Chapter 2 of MLS

Part (a): To show that a matrix, R is in SO(3), we must show that R RT = I, where I is
the 3× 3 identity matrix, and that det(R) = 1. We are given that:

R = (I − â)−1(I + â) (6)

where â is a 3× 3 skew symmetric matrix. Thus, the first step is:

R RT = (I − â)−1(I + â)(I + â)T (I − â)−T (7)

= (I − â)−1(I + â)(I − â)(I + â)−1 (8)

where we have used the fact that âT = −â in the second identity. Note that (I+ â)(I− â) =
I − â2 = (I − â)(I + â). Substituting this result into Equation (7) yields the answer:

R RT = (I − â)−1(I + â)(I − â)(I + â)−1 (9)

= (I − â)−1(I − â)(I + â)(I + â)−1 (10)

= I (11)

To check the determinant, note that

det(R) = det[(I − â)−1(I + â)] =
det(I + â)

det(I − â)
.
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We have already shown that R is an orthogonal matrix, and therefore it’s determinant is
+1 or −1. Since the determinant is a continuous function, at a = 0 note that det(R) = +1.
Hence, det(R) = +1 for all values of â. If you didn’t know that det(R) is a continuous
function, then brute force algebra will yield the same result.

Part (b): There were several ways to show that

R = (I − â)−1(I + â) =
1

1 + ||a||2

1 + a2
1 − a2

2 − a2
3 2(a1a2 − a3) 2(a1a3 + a2)

2(a1a2 + a3) 1− a2
1 + a2

2 − a2
3 2(a2a3 − a1)

2(a1a3 − a2) 2(a2a3 + a1) 1− a2
1 − a2

2 + a2
3


(12)

Of course, you could have expanded out the expression for R to show the equivalence. The
least grungy way (in terms of messy algebra) was to show that (I − â)R = I + â, where R
is the expression for the rotation matrix in terms of a1, a2, and a3 (Equation (13) below).

Part (c): There are multiple ways to solve this problem. The simplest way is to use the
expression of part 5(b) (Equation (12) quoted in the text:

R =
1

1 + ||a||2

1 + a2
1 − a2

2 − a2
3 2(a1a2 − a3) 2(a1a3 + a2)

2(a1a2 + a3) 1− a2
1 + a2

2 − a2
3 2(a2a3 − a1)

2(a1a3 − a2) 2(a2a3 + a1) 1− a2
1 − a2

2 + a2
3

 (13)

where ||a||2 is shorthand notation for ||a||2 = a2
1 + a2

2 + a2
3. Noting that

trace(R) =
3− ||a||2

1 + ||a||2
⇒ ||a||2 =

3− trace(R)

1 + trace(R)
=

3− r11 − r22 − r33
1 + r11 + r22 + r33

so that an expression for ||a||2 is known, simple algebraic manipulation of the off-diagonal
term of R in Equation (13) yielda1

a2

a3

 =
1 + ||a||2
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r32 − r23
r13 − r31
r21 − r12



Problem 6: Problem 10 (a,b) in Chapter 2 of MLS (not including the question of surjectivity
in 10(b)).

Note that

ω̂ =

[
0 −w
w 0

]
= wJ where J =

[
0 −1
1 0

]
Then:

ω̂2 = w2

[
−1 0
0 −1

]
= −w2I; ω̂3 = −w3J
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Hence the exponential of ω̂ can be computed as:

exp (θω̂) =

(
I +

θ

1!
ω̂ + +

θ2

2!
ω̂2 + · · ·

)
=

(
I +

wθ

1!
J − w2θ2

2!
I − w3θ3

3!
J + · · ·

)
=

(
1− w2θ2

2!
+ · · ·

)
I +

(
wθ

1!
− w3θ3

3!
+ · · ·

)
J

=

[
cos(wθ) − sin(wθ)
sin(wθ) cos(wθ)

]
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