
ME 115(a): Solution to Homework #2
(Winter 2009/2010)

Problem 1: (15 points). To find the geometry of the moving centrode of the elliptical
trammel, place a body fixed reference frame on the moving link so that its origin lies at the
mid-point of Points A and B, and its x-axis point in the direction from point A to point
B. In Figure 1(a) the basis vectors of this moving reference frame are denoted (~xb, ~yb). Let
a fixed reference frame (with basis vectors (~xf , ~yf )) be placed a the intersection of the two
sliding joints.

Figure 1: (a): Diagram of the Elliptical Trammel. (b): Expanded and rotated view of (a),
showing the geometry of pole location in the moving coordinate system.

To solve this problem, one must compute the location of the centrode as seen by an observer
in the moving frame. Let a = |AB|. Let θ denote the angle between the body-fixed x-
axis and the x-axis of the fixed reference frame. This angle also defines the angles of the
right-handed triangle ABP. Using the geometry of Figure 1(b), it can be seen that

δ = |BP| = a sin
(π

2
− θ

)
= a cos θ .

Similarly, from this diagram we can deduce that the x-coordinate of the centrode, denoted
u, is given by:

u =
a

2
− δ cos θ =

a

2
− a cos2 θ .

Likewise, the y-coordinate of the centrode in the moving frame, denoted v, is simply:

v = δ sin θ = a cos θ sin θ .
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Thus, in the moving reference frame:

u2 + v2 = (a cos θ sin θ)2 +
(a

2
− a cos2 θ

)2

= a2(cos2 θ sin2 θ +
1

4
+ cos4 θ − cos2 θ)

= a2(
1

4
+ cos2 θ(sin2 θ + cos2 θ − 1))

=
(a

2

)2

Thus, the moving centrode (the set of pole locations in the moving reference frame) is a

circle with radius a
2

centered at the midpoint of ~AB.

Problem 2: (15 points)

Part (a): You were to “prove” that a 3-dimensional body undergoing spherical motion has 3
degrees-of-freedom (DOF). By definition, a body undergoing spherical motion has one fixed
point. Let the 3D body consist of N particles. Let P1 denote the particle lying at the fixed
point. A point particle in 3-dimensional Euclidean space requires 3 independent variables
to fix its location. However, since P1 does not move, it has 0 degrees-of-freedom (DOF).
Now consider a particle P2 in the body. Particle P2 has 3 DOF as a particle. However, it is
constrained to lie a fixed distance, d12 from particle P1 due to the fact that P1 and P2 are
part of the same rigid body. The fixed distance relationship imposes one constraint on P2.
Next consider a point P3, which lies a fixed distance from P1 and P2. Therefore, there are
two constraints on the location of P3. Next, consider a particle P4. Since its must lie a fixed
distance from P1, P2, and P3, there are three constraints on its motion. Particles P5, . . ., PN

similarly have 3 constraints.

Remembering that particle P1 has zero DOF, the total number of degrees of freedom of the
N particles (considered independently) is: 3(N − 1) + 0 = 3N − 3. The total number of
constraints on these particles needed for them to form a rigid body is: 1 + 2 + 3(N − 3)
= 3N − 6. Hence, the total net DOF of a body is the number of freedoms of the particles
minus the number of constraints that bind them into a rigid body: (3N − 3)− (3N − 6) = 3.

Part (b): (Problem 7 in MLS Chapter 2). There are several ways to solve this problem.
One approach is analogous to the solution of Part (a). A rigid body in an n-dimensional
Euclidean space consists of particles P1, P2, . . ., PN . Each particle requires n independent
DOF to uniquely describe its state.

• Arbitrarily pick particle P1 in the body. There are no constraints on its motion.

• Particle P2 is constrained by a single constraint to lie a fixed distance from P1.

• Particle P3 is similarly constrained by its fixed distance from P1 and P2.

• Continuing in this way, particle Pn+1 is constrained to have n fixed distances to particles
P1, . . . , Pn.
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As independent particles, the N bodies have a total of nN DOF. However, these bodies are
constrained by NC constraints, where1:

NC = 0 + 1 + 2 + · · · + (n − 1) + (N − n)n =
1

2

(
(n − 1)2 + (n − 1)

)
+ (N − n)n

=
1

2
(n2 − n) + Nn − n2 = Nn − 1

2
(n2 + n) . (1)

Hence, the total number of DOF can be found as

Nn −
(

Nn − 1

2
(n2 + n)

)
=

1

2
(n2 + n).

Here is an alternative solution. The location of a body moving in an n-dimensional Euclidean
space can be uniquely described by a point in the body, p ∈ Rn and a rotation matrix,
R ∈ SO(n). Recall that matrices in SO(n) must satisfy the relation RT R = I, where I is
the n× n identity matrix. Thus, for the entries of any matrix in SO(3), there are 1

2
(n + n2)

constraints of the form:

cT
i cj =

{
1, i = j

0, i 6= j

where ci is the ith column of R. Thus, the n2 elements of R ∈ SO(n) can only have
n2 − 1

2
(n + n2) = 1

2
(n2 − n) independent DOF. Thus, a rigid body in Rn has

n +
1

2
(n2 − n) =

1

2
(n2 + n)

DOF.

Problem 3: (5 Points). Problem 3(c) in Chapter 2 of MLS.

Let

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 =
[
~r1 ~r2 ~r3

]
.

Expanding det(R) using cofactors, one finds:

det(R) = r11(r22r33 − r32r23) + r21(r32r13 − r12r33) + r31(r12r23 − r22r13)

= ~rT
1 · (~r2 × ~r3)

Problem 4: (10 Points). Problem 4(a,b) in Chapter 2 of MLS.

1This result is obtained by using the identity:

k∑
j=1

j =
1
2
(k2 + k).
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Part (a): Let’s assume that the statement in part (b) of the problem is true. Let ~w be a
3 × 1 vector and let ~v be any 3 × 1 vector. Then:

(RŵRT )~v = Rŵ(RT~v)
= R(~w × (RT~v))
= (R~w) × (RRT~v)
= (R~w) × ~v

= ̂(R~w)~v

Since this must be true for any vector ~v, then RŵRT = ̂(R~w).

Part (b): We can now assume that part (a) holds.

(R~v) × (R~w) = (̂R~v)(R~w)
= (Rv̂RT )(R~w)
= Rv̂RT R~w
= R(v̂ ~w)
= R(~v × ~w)

Problem 5: (10 points). Problem 10 (b,c) in Chapter 2 of MLS.

Problem 10(b): Note that

ω̂ =

[
0 −w
w 0

]
= wJ where J =

[
0 −1
1 0

]
Then:

ω̂2 = w2

[
−1 0
0 −1

]
= −w2I; ω̂3 = −w3J ; etc..

Hence the exponential of ω̂ can be computed as:

exp (θω̂) =

(
I +

θ

1!
ω̂ + +

θ2

2!
ω̂2 + · · ·

)
=

(
I +

wθ

1!
J − w2θ2

2!
I − w3θ3

3!
J + · · ·

)
=

(
1 − w2θ2

2!
+ · · ·

)
I +

(
wθ

1!
− w3θ3

3!
+ · · ·

)
J

= cos(ωθ)I + sin(ωθ)J =

[
cos(wθ) − sin(wθ)
sin(wθ) cos(wθ)

]
Problem 10(c): Let R ∈ SO(2) and ω̂ ∈ so(2) have the forms:

R =

[
cos θ − sin θ
sin θ cos θ

]
ω̂ =

[
0 −ω
ω 0

]
. (2)
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A brute force calculation yields:

Rω̂RT =

[
cos θ − sin θ
sin θ cos θ

] [
0 −ω
ω 0

] [
cos θ sin θ
− sin θ cos θ

]
=

[
cos θ − sin θ
sin θ cos θ

] [
ω sin θ −ω cos θ
ω cos θ ω sin θ

]
=

[
ω(cos θ sin θ − sin θ cos θ) −ω(cos2 θ + sin2 θ)

ω(sin2 θ + cos2 θ) −ω(− sin θ cos θ + sin θ cos θ)

]
=

[
0 −ω
ω 0

]
(3)
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