ME 115(a) 2006: Solution to Homework #3

Problem 1:

Part (a): Elements of SU(2) have the form:

z w| | (a+1ib) (c+id)
—w* z*|  |—(c—id) (a—ib)
where zz* + ww* = a? + b* + 2 + d*> = 1. Thus, the scalar elements a, b, ¢, and d are
in one-to-one correspondence with the scalar elements of unit quaternions. That is, let a
quaternion be represented by ¢ = A\; + Aot + A3j + Ak = (A1, A2, A3, A\g). The correspondence
is then:

M o= a=Re(z)= 17 (1)
h = b=Im(z) = "2 (2)
Ns = ¢= Re(w)= “’J;w* (3)
Moo= d=Im(w)= ") ()

The unit quaternion elements are in one-to-one correspondence with the Euler parameters

of a rotation: (A1, Ay, A3, Ay) = (cos %, S, sin 2 Sy sin 2 s, sin %) ¢ is the rotation about an

2 2
axis represented by a unit vector & = [w, w, w,]’.

Part (b): A 2 x 2 complex matrix which represents an arbitrary rotation as a function of
the z-y-x Euler angles can be developed as the product of 2 x 2 complex matrices which
represent rotations about the z, y, and x axes. A rotation about the x-axis of amount ~ has
the 2 x 2 representation (since A} = cos 3, Ay =sin2, A3 = Ay = 0):

[(cos%—b—z’sin%) 0 )] _ {ez 0 ]

.. el
0 (cos3 —ising 0 e’z

Similarly, a rotation of amount ¢ about the y-axis can be represented as:

¢ 9
|: COS§ S1n §:|

—gin? [
sing  cos 3

while a rotation of amount ¢ about the z-axis can be represented as:

v sain ¥
cos 5 ising
isin® cos¥

2 2



Part (c):

z -+ z*

¢ = 2cos *(a) =2cos (

Wy = =

Vb2 + 2+ d? \/(z—Qz*)z T ww*
L c _ (w+w")/2
Y Vb2 + 2 + d? \/(Z—QZ* )2 + ww*
o d _ (w—w*)/2
: V2 + 2+ d? \/(z,;*)Q + ww*

Problem 2: Start with Rodriguez’ formula for a rotation matrix:

e’ =T + Osinf + &*(1 — cosb)

and:
AL = cos?
2
A9 = W1SIN—
A3 = WeSIN—
A4 = W3Sin—

From Rodriguez’ fomula we find that

(10)

(11)
(12)
(13)

(wi%(1 — cosP) + cosd)  wiwa(l — cosp) — wssing wiwsz(1 — cosP) + wasing
R = |wwa(l — cosd) + wzsing  wo?(1 — cosg) + cosd  wows(1 — cosg) — wysing
wiws(1 — cosP) — wasing  wowsz(1l — cosp) + wising  ws?(1 — cosg) + cosg

To simplify this, we need to use some trig identities:

sin(2x) = 2sin(x)cos(x)

cos(2x) = 1 — 2sin*(x)



By rearanging our A equations, we get:

A = cosg (14)
A2
e Sm%
A3
2= sin%
— )\4
e sin§

Using this knowledge, our original R matrix simplifies to:

M+ -X-A)  2(Xd3—AN\) 2(AaAs + A1)
R = 2(A2Ag + A1 \y) (A2 = A2+ 22—\ 2(A3As — M)
2(A2Ag — M A3) 2(Asd + M) (A2 — 22— A2+ )2)
Problem 3:
A2+ 22— X2 — )3 2(A2A3 — A1) 2(AaAg + A1 A3)
R = 2(A2A3 + A \y) (A2 — A2+ 22— )% 2(A3As — A1 A9)
2(AoAs — A1 A3) 20sd + M) (A=A = A3+ A))

To extract the quaternion parameters from the rotation matrix, note that:
i1+ To2 4 733 = 3A] — A3 — Af — A

Using the fact that A} + A3+ A\ + A7 = 1, then

r11 + Tog + 133+ 1
4

7’11+T22+7’33:4)\%—1 — )\?:

Assuming that A; # 0, then

To1 — T2

o1 —T19 = 2()\2)\3 —+ )\1/\4) — 2()\2)\3 — )\1)\4) = 4/\1)\4 = )\4 = X
1
Similary, one can show that

13 — 131 32 — 723
g =23\, =25
K Y 2 A\

If A\; =0 (or practically, if Ay is very small), then one can choose a different factorization.

Problem 4:(Problem 6(a,b,d) in Chapter 2 of MLS).



e Part (a): Let @ and P be unit quaternions—i.e., QQ* = PP* = 1. The set of unit
quaternions is a group if you can show that: (i) multiplication is commutative; (ii)
the product of group elements yields a group element; (iii) the set contains an identity
element; (iv) every group element has an inverse element, and the inverse is in the

group.

(i) It is easy to show that quaternion multiplication is commutative.

(ii) The product of unit quaternions, Q P, is a unit quaternion: QP(QP)* = QPP*Qx =
QQ* =1.

(iii) The identity quaternion is: e = (1,0,0,0) =14+0-i+0-5+0- k.

(iv) The inverse of any unit quaternion @ is Q*, which is also a unit quaternion (since

Q(Q) =QQ=(QR) =1"=1).

e Part (b): If a unit quaternion, g, has real part qg and pure part gp, and T = [z, x5 23]

is represented as a pure quaternion Z = (0, 1, x9, x3) = 0+ Z, then:

g = Z-qp  (« real part)

+ qr?— (¥ xqp  (+ pure part)

Similarly, the product gig™! is:

¢t = qr(T- qp) — qp - (qrT — T X qp) (< real part)

+ qr(qrT — T x qp) + (T - qp)qp + qp X (qr¥ — ¥ X qp)  (+ pure part)
The real part of gzq~* is:
(Z-qp)gr — qp - [qr% — (¥ % qp)] = qr(Z - qp) — qr(Z-qp) + qp - (X x qp) =0

Thus gzq~! is a pure quaternion when 7 is.
The vector part of gZg~! is:
qr(qrT — T X qp) + (7-qp)qp +qp X (T — T X qp)
= qr’T— qr(Z X qp) + (T qp)ar + qrlqp X T) — qp X (& X qp)
qxT — 2qr(T % qp) + (T qr)ar — [(ar - ¢P)T — (7 - qp)ap]
= ldg — (ap - ap)IT +2[(Z - qp)ar + qrlqp X T)]

where we have used the triple cross product identity: @ x (b x &) = (@ - &)b — (@ - b)é
To show that this is the same as applying a rotation to point x:
Let Q = (cosf, w sin £), where ||w|| = 1. Then the vector part of QXQ* becomes

2(.4)

29 5)1,

6 6 6
= (cos 5 sin2§)x + (2@cos§sin§)x + 2(ww

(cosOI + wsinf + &*(1 — cosh)z
= (expwh)x = Rx

Tsin



e Part (d):

(i) If A;, Ay € SO(3), then each of the 9 elements in the product matrix A; A
requires 3 multiplications and 2 additions. Hence, the product A; A, requires a
total of 27 multiplications and 18 additions.

(ii) Let ¢; and g2 be quaternions, with respective real and vector parts ¢ig, g2r and
qip, Gap. The real part of the quaternion product, ¢irgar — ¢ip - ¢op, requires 4
multiplications and 3 additions (where the subtraction is counted as an addition).
The pure part, ¢sp = q1rG2r + ©2r1P + ¢1p X G2p, can be evaluated in 12 mul-
tiplications and 9 additions. Thus, the quaternion product requires a total of 16
multiplications and 12 additions. It is therefore more efficient than the equivalent
matrix multiplication.

(iii) The rotation of a vector by multiplication of a 3 x 3 rotation matrix times a 3 x 1
vector requires only 9 multiplications and 6 additions.

(iv) The number of multiplications and additions for the equivalent quaternion opera-
tion will depend upon the form which one uses for the quaternion vector rotation.
Using the identity 1 = ¢% + qp - qp, it is possible to show that the vector part of
qZq" in part (b) above can be rearranged to the form:

T+ 2[gp % (qp X Z) + qr(gp X )]

Since gp X & need only be evaluated once, this takes only 18 multiplications and 12
additions. However, no matter what form one tries, the quaternion approach will
always take more operations than the matrix/vector approach for vector rotation.

Problem 5: (Problem 11(a,b) in Chapter 2 of MLS).

e Part (a): Recall that the matrix exponential of a twist, £, is:

¢ 2A2 ¢3A3
ﬁg‘i‘aﬁ + o8t

‘bé:I
e + 3]

First, let’s consider the case of £ = (v,w), with w = 0. If:

R 0 0 v,
E=10 0 v,
00 0
then €2 = 0. Thus
1 0 o¢v, -
e — o 1 duy | = {6]75 Ulﬂ
00 1



To compute the exponential for the more general case in which w # 0, let us assume
that ||w|| = 1. In this case, note that @* = —I, where I is the 2 x 2 identity matrix. It is
easiest if we choose a different coordinate system in which to perform the calculations.

Let
X 0 W Uy o 0
62 W 0 Uy |:6T 0:|
0 0 0
Let
I v
O [
Let is define a new twist, é’:
£ =gy
| —wv) | v [T WU
101 0 0|0 1
o (@*T+0)] o 0
) 0 100
where we made use of the identity @? = —I. That is, we have chosen a coordinate

system in which é/ corresponds to a pure rotation. Thus,
" PR 0
o€ _ |€
PR
Using Eq. (2.35) on page 42 of the MLS text:

- N [ o0 0w\ N7
= getg = | (1 “ )wvcﬁ]

which is clearly an element of SFE(2).

Part(b): It is easy to see from part (a) that the twist & = (vg,v,,0)" maps directly
to the planar translation (v,,v,).

The twist corresponding to pure rotation about a point ¢ = (¢,,q,) can be thought

of as the Ad-transformation of a twist, ¢ = (0,0,w), which is pure rotation, by a
transformation, g, which is pure translation by ¢

£ =Ady¢ = (h{'n" (19)
where

assuming w = 1.



