
ME 115(a): Solution to Homework #3

Problem # 1:

Part (a): Elements of SU(2) have the form:

[
z w

−w∗ z∗

]
=

[
(a+ ib) (c+ id)
−(c− id) (a− ib)

]
where zz∗ + ww∗ = a2 + b2 + c2 + d2 = 1. To show that the matrices[

1 0
0 1

] [
i 0
0 −i

] [
0 1
−1 0

] [
0 i
i 0

]
form a basis for SU(2), let A, B, C, and D be real numbers. Then, the matrix formed by
the product of A, B, C,and D with these matrices is:

A

[
1 0
0 1

]
+B

[
i 0
0 −i

]
+ C

[
0 1
−1 0

]
+D

[
0 i
i 0

]
=

[
A+ iB C + iD
C − iD A− iB

]
is a matrix in SU(2) for any choice of A, B, C, and D where A2 +B2 +C2 +D2 = 1. Thus
these four basis matrices for SU(2) are in 1-to-1 correspondence with the 1, i, j, and k basis
elements for the quaternions. Thus, the scalar elements A, B, C, and D are in one-to-one
correspondence with the scalar elements of unit quaternions. That is, let a unit quaternion
be represented by q = λ1 + λ2i+ λ3j + λ4k = (λ1, λ2, λ3, λ4). The correspondence is then:

λ1 = A = Re(z) =
z + z∗

2
(1)

λ2 = B = Im(z) =
i(z∗ − z)

2
(2)

λ3 = C = Re(w) =
w + w∗

2
(3)

λ4 = D = Im(w) =
i(w∗ − w)

2
(4)

Part (b):The unit quaternion elements are in one-to-one correspondence with the Euler
parameters of a rotation: (λ1, λ2, λ3, λ4) = (cos φ

2
, ωx sin φ

2
, ωy sin φ

2
, ωz sin φ

2
). φ is the rotation

about an axis represented by a unit vector ~ω = [ωx ωy ωz]
T . A 2× 2 complex matrix which

represents an arbitrary rotation as a function of the z-y-x Euler angles can be developed as
the product of 2× 2 complex matrices which represent rotations about the z, y, and x axes.
A rotation about the x-axis of amount γ has the 2 × 2 representation (since λ1 = cos γ

2
,

λ2 = sin γ
2
, λ3 = λ4 = 0):[

(cos γ
2

+ i sin γ
2
) 0

0 (cos γ
2
− i sin γ

2
)

]
=

[
ei

γ
2 0

0 e−i
γ
2

]
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Similarly, a rotation of amount φ about the y-axis can be represented as:[
cos φ

2
sin φ

2

− sin φ
2

cos φ
2

]
while a rotation of amount ψ about the z-axis can be represented as:[

cos ψ
2

i sin ψ
2

i sin ψ
2

cos ψ
2

]
The product of these matrices yields the result.

Part (c):

φ = 2 cos−1(a) = 2 cos−1(
z + z∗

2
) (5)

ωx =
b√

b2 + c2 + d2
=

(z− z∗)/2√
(z−z∗

2
)2 + ww∗

(6)

ωy =
c√

b2 + c2 + d2
=

(w + w∗)/2√
(z−z∗

2
)2 + ww∗

(7)

ωz =
d√

b2 + c2 + d2
=

(w −w∗)/2√
(z−z∗

2
)2 + ww∗

(8)

Problem 2: Problem 6(d,e) in Chapter 2 of MLS.

Part (d):

(i) If A1, A2 ∈ SO(3), then each of the 9 elements in the product matrix A1 A2 requires
3 multiplications and 2 additions. Hence, the product A1 A2 requires a total of 27
multiplications and 18 additions.

(ii) Let q1 and q2 be quaternions, with respective real and vector parts q1R, q2R and ~q1P , ~q2P .
The real part of the quaternion product, q1Rq2R − ~q1P · ~q2P , requires 4 multiplications
and 3 additions (where the subtraction is counted as an addition). The pure part,
~q3P = q1R~q2P + q2R~q1P + ~q1P × ~q2P , can be evaluated in 12 multiplications and 9
additions. Thus, the quaternion product requires a total of 16 multiplications and 12
additions. It is therefore more efficient than the equivalent matrix multiplication.

(iii) The rotation of a vector by multiplication of a 3 × 3 rotation matrix times a 3 × 1
vector requires only 9 multiplications and 6 additions.
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(iv) The number of multiplications and additions for the equivalent quaternion operation
will depend upon the form which one uses for the quaternion vector rotation. Using
the identity 1 = q2

R + qP · qP , it is possible to show that the vector part of qx̃q−1 in
part (b) above can be rearranged to the form:

~x+ 2[qP × (qP × ~x) + qR(qP × ~x)]

Since qP × ~x need only be evaluated once, this takes only 18 multiplications and 12
additions. However, no matter what form one tries, the quaternion approach will
always take more operations than the matrix/vector approach for vector rotation.

Part (e): Let a body rotate about a fixed axis ~ω by an angle φ(t). Let the unit quaternion
Q(t) denote the orientation of this rotating body. This quaternion can be represented in the
“vector” form

Q(t) =

(
cos(

φ(t)

2
), ~ω sin(

φ(t)

2
)

)
. (9)

Thus, the time rate of change of this quaternion is:

Q̇(t) =

(
− φ̇(t)

2
sin(

φ(t)

2
),
φ̇(t)

2
~ω cos(

φ(t)

2
)

)
. (10)

Recall that if Q1 = (Q1,r, ~Q1,v) and Q2 = (Q2,r, ~Q2,v) (in the convenient “vector” notation
for a quaternion), then

Q1 ·Q2 = (Q1,rQ2,r − ~Q1,v · ~Q2,v, Q1,r
~Q2,v +Q2,r

~Q1,v + ~Q1,v × ~Q2,v) . (11)

Substituting the appropriate forms of Equations (9) and (10) into Equation (11) yields:

Q̇ ·Q∗ =

(
− φ̇

2
sin(

φ

2
),
φ̇

2
~ω cos(

φ

2
)

)(
cos(

φ

2
),−~ω sin(

φ

2
)

)
(12)

=

(
0,
φ̇

2
~ω

)
(13)

Problem 4: Problem 11(a,b,e) in Chapter 2 of MLS.

Part (a): Recall that the matrix exponential of a twist, ξ̂, is:

eφξ̂ = I +
φ

1!
ξ̂ +

φ2

2!
ξ̂2 +

φ3

3!
ξ̂3 + · · ·

First, let’s consider the case of ξ = (v, ω), with ω = 0. If:

ξ̂ =

0 0 vx
0 0 vy
0 0 0


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then ξ̂2 = 0. Thus

eφξ̂ =

1 0 φvx
0 1 φvy
0 0 1

 =

[
I ~vφ
~0t 1

]
To compute the exponential for the more general case in which ω 6= 0, let us assume that
||ω|| = 1. In this case, note that ω̂2 = −I, where I is the 2× 2 identity matrix. It is easiest
if we choose a different coordinate system in which to perform the calculations. Let

ξ̂ =

0 −ω vx
ω 0 vy
0 0 0

 =

[
ω̂ ~v
~0T 0

]
Let

g =

[
I ω̂~v
~0T 1

]

Let is define a new twist, ξ̂
′
:

ξ̂
′

= g−1ξ̂g

=

[
I −ω̂~v
0 1

] [
ω̂ ~v
0 0

] [
I ω̂~v
0 1

]
=

[
ω̂ (ω̂2~v + ~v)
0 0

]
=

[
ω̂ 0
0 0

]
where we made use of the identity ω̂2 = −I. That is, we have chosen a coordinate system
in which ξ̂

′
corresponds to a pure rotation. Thus,

eφξ̂
′

=

[
eφω̂ 0
0 1

]
.

Using Eq. (2.35) on page 42 of the MLS text:

eφξ̂ = geφξ̂
′

g−1 =

[
eφω̂ (I − eφω̂)ω̂~vφ
0 1

]
which is clearly an element of SE(2).

Part(b): It is easy to see from part (a) that the twist ξ = (vx, vy, 0)T maps directly to the
planar translation (vx, vy).

The twist corresponding to pure rotation about a point ~q = (qx, qy) can be thought of as the
Ad-transformation of a twist, ξ

′
= (0, 0, ω), which is pure rotation, by a transformation, g,

which is pure translation by ~q:

ξ = Adhξ
′
= (hξ̂

′
h−1)∨ (14)

where

h =

[
I ~q
0 1

]
and x̂i

′

=

[
ω̂ 0
~0T 0

]
.
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Expanding Eq. (14) gives:

ξ = (hξ̂
′
h−1)∨ =

[
ω̂ −ω̂~q
~0T 0

]∨
=

 qy
−qx
1


assuming ω = 1.

Part (e): Let V̂ b denote the planar body velocity:

V̂ b =

[
ω̂b ~vb

~0T 0

]
where ω̂b ∈ so(2), ~vb ∈ R2. Then the planar spatial velocity is:

V̂ s = AdgV̂
b = gV̂ bg−1

=

[
R ~p
~0T 1

] [
ω̂b ~vb

~0T 0

] [
RT −RT~p
~0T 0

]
=

[
Rω̂bRT −Rω̂bRT~p+R~vb

~0T 0

]
Therefore:

ω̂s = Rω̂bRT ~vs = R~vb −Rω̂bRT~p = R~vb − ω̂s~p

The spatial angular velocity can be simplified as follows:

ω̂s = Rω̂bRT =

[
r11 r12
r21 r22

] [
0 −ω
ω 0

] [
r11 r21
r12 r22

]
= ω

[
0 − det(R)

det(R) 0

]
= ω

[
0 −1
1 0

]
= ω̂b

Using this result:

~vs = R~vb − ω̂s~p = R~vb + ωb
[
py
−px

]
=

[
R

[
py
−px

]] [
~vb

ωb

]

Therefore:

V s =

[
~vs

ωs

]
=

R [
py
−px

]
~0T 1

V b

Problem 4: Problem 14 in Chapter 2 of MLS.

Part (a): Let g ∈ SE(3) denote a homogeneous transformation matrix:

g =

[
R ~p
~0T 1

]
Adg =

[
R p̂R
0 R

]
Then:

g−1 =

[
RT −RT~p
~0T 1

]
Adg−1 =

[
RT − ̂(RT~p)RT

~0T RT

]
=

[
RT −RT p̂
0 RT

]
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where we have made use of the identity ̂(RT~p) = RT p̂R. Let’s now compute AdgAdg−1 :

AdgAdg−1 =

[
R p̂R
0 R

] [
RT −RT p̂
0 RT

]
=

[
I 0
0 I

]
Hence, Adg−1 must equal (Adg)

−1 since AdgAdg−1 = I.

Part (b): If

g1 =

[
R1 ~p1

~0T 1

]
g2 =

[
R2 ~p2

~0T 1

]
Then

g1g2 =

[
R1R2 ~p1 +R1~p2

~0T 1

]
Hence:

Adg1g2 =

[
R1R2 (~p1 +R1~p2)

ˆR1R2

0 R1R2

]
=

[
R1R2 p̂1R1R2 +R1p̂2R

T
1R1R2

0 R1R2

]
=

[
R1R2 p̂1R1R2 +R1p̂2R2

0 R1R2

]
=

[
R1 p̂1R1

0 R1

] [
R2 p̂2R2

0 R2

]
= Adg1Adg2

Problem 5: (Problem 18(a,b,c,d) in Chapter 2 of MLS).

Part (a): If a frame B is moving with respect to an observing frame A, then

~V h
AB =

[
~̇pAB
~ωsAB

]
.

Note that

~V h
AB =

[
~̇pAB
~ωsAB

]
=

[
RABR

T
AB ṗAB

RAB~ω
b
AB

]
=

[
RAB 0

0 RAB

] [
RT
AB ~̇pAB
~ωbAB

]
=

[
RAB 0

0 RAB

]
~V b
AB

Part (b): There are many ways to solve this problem. For example, you could either start
with Proposition 2.14 or Proposition 2.15 on page 59 of MLS which relate the velocities of
three frames, A, B, and C. Let’s choose Prop. 2.15:

V b
ac = Adg−1

bc
V b
ab + V b

bc (15)

Using the fact that

V h
ac =

[
Rac 0
0 Rac

]
V b
ac
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Eq. (15) can be written as:

V h
ac =

[
Rac 0
0 Rac

]
(Adg−1

bc
V b
ab + V b

bc)

=

[
Rac 0
0 Rac

] [
RT
bc −RT

bcp̂bc
0 RT

bc

]
V b
ab +

[
Rac 0
0 Rac

]
V b
bc

=

[
Rab −Rabp̂bc
0 Rab

]
V b
ab +

[
Rab 0
0 Rab

] [
Rbc 0
0 Rbc

]
V b
bc

=

[
I − ̂(Rabpbc)
0 Rab

] [
Rab 0
0 Rab

]
V b
ab + AdRab

V h
bc

= Ad−Rabpbc
V h
ab + AdRab

V h
bc

(16)

Part (c): Let frames A and B be stationary “spatial” frames, and let Frame C be fixed to
a moving body. Let V h

bc be the hybrid velocity of the body, as seen by an observer in the B
frame. If we now want to express this velocity as seem by an observer in the A frame (i.e.,
changing the spatial frame), we need to calculate V h

ac. You can do this using the results of
part (b) of this problem which derived the result:

V h
ac = Ad−Rabpbc

V h
ab + AdRab

V h
bc (17)

If you chose this approach, then since A and B are stationary, V h
ab = 0. Hence, Eq. (16)

takes the form:
V h
ac = AdRab

V h
bc

Hence, the hybrid velocity is dependent on the orientation of the spatial frame, but not its
position.

Alternatively, if you don’t want to rely upon part (b), you can recall that the expression for
the hybrid velocity is:

V h
ac =

[
~̇pac
~ωsac

]
Since ~pac = ~pab +Rab~pbc, and ~pab is constant:

~̇pac = Rab~̇pbc.

Similarly, ~ωac = Rab~ωbc. Hence, V h
ac is dependent of ~pab, but not Rab.

Part (d): Let A be a stationary spatial frame. Let B and C be two different frames attached
to a moving body. Let us assume that the velocity of the rigid body is given by V h

ab. If we
now switch the location of the body fixed frame from position B to position C, the hybrid
velocity of the body is given by V h

ac. Since B and C are both fixed in the body, then V h
bc = 0

in Eq. (16). Hence Eq. (16) reduces to:

V h
ac = Ad−Rabpbc

V h
ab
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Hence, the hybrid velocity in only dependent on pbc, the position of the body frame, and not
on Rbc, the orientation of the body fixed frame. Alternatively, you could compute V h

ac in a
“brute force” way:

V h
ac =

[
~̇pac
~ωac

]
=

[
d
dt

(~pab +Rab~pbc)

(ṘacR
T
ac)

∨

]
=

[
~̇pab + ω̂sabRab~pbc)

(ṘabRbcR
T
bcR

T
ab)

∨

]
=

[
~̇pab + ω̂sabRab~pbc)

~ωsab

]
= Ad−Rabpbc

V h
ab

Thus, the result only depends upon ~pbc, and not Rbc.
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