
ME 115(a): Solution to Homework #3

Problem #1: (20 points, Problem 6(a,b,d,e) in Chapter 2 of MLS).

Part (a): Let Q and P be unit quaternions—i.e., QQ∗ = PP ∗ = 1. The set of unit
quaternions is a group if you can show that: (i) multiplication is associative; (ii) the product
of group elements yields a group element; (iii) the set contains an identity element; (iv) every
group element has an inverse element, and the inverse is in the group.

(i) It is easy to show that quaternion multiplication is associative, since multiplication of
all of the quaternian basis elements for quaternians is an associative process.

(ii) The product of unit quaternions, QP , is a unit quaternion: QP (QP )∗ = QPP ∗Q∗ =
QQ∗ = 1.

(iii) The identity quaternion is: e = (1, 0, 0, 0) = 1 + 0 · i+ 0 · j + 0 · k.

(iv) The inverse of any unit quaternion Q is Q∗, which is also a unit quaternion (since
Q∗(Q∗)∗ = Q∗Q = (QQ∗)∗ = 1∗ = 1).

Part (b): If a unit quaternion, q, has real part qR and pure part qP , and ~x = [x1 x2 x3]
T is

represented as a pure quaternion x̃ = (0, x1, x2, x3) = 0 + ~x, then:

x̃q−1 = ~x · qP (← real part)

+ qR~x− (~x× qP (← pure part)

Similarly, the product qx̃q−1 is:

qx̃q−1 = qR(~x · qP )− qP · (qR~x− ~x× qP ) (← real part)

+ qR(qR~x− ~x× qP ) + (~x · qP )qP + qP × (qR~x− ~x× qP ) (← pure part)

The real part of qx̃q−1 is:

(~x · qP )qR − qP · [qR~x− (~x× qP )] = qR(~x · qP )− qR(~x · qP ) + qP · (~x× qP ) = 0

Thus qx̃q−1 is a pure quaternion when x̃ is.

The vector part of qx̃q−1 is:

qR(qR~x− ~x× qP ) + (~x · qP )qP + qP × (qR~x− ~x× qP )

= qR
2~x− qR(~x× qP ) + (~x · qP )qP + qR(qP × ~x)− qP × (~x× qP )

= q2R~x− 2qR(~x× qP ) + (~x · qP )qP − [(qP · qP )~x− (~x · qP )qP ]

= [q2R − (qP · qP )]~x+ 2[(~x · qP )qP + qR(qP × ~x)]

where we have used the triple cross product identity: ~a× (~b× ~c) = (~a · ~c)~b− (~a ·~b)~c

Part (d):
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(i) If A1, A2 ∈ SO(3), then each of the 9 elements in the product matrix A1 A2 requires
3 multiplications and 2 additions. Hence, the product A1 A2 requires a total of 27
multiplications and 18 additions.

(ii) Let q1 and q2 be quaternions, with respective real and vector parts q1R, q2R and ~q1P , ~q2P .
The real part of the quaternion product, q1Rq2R − ~q1P · ~q2P , requires 4 multiplications
and 3 additions (where the subtraction is counted as an addition). The pure part,
~q3P = q1R~q2P + q2R~q1P + ~q1P × ~q2P , can be evaluated in 12 multiplications and 9
additions. Thus, the quaternion product requires a total of 16 multiplications and 12
additions. It is therefore more efficient than the equivalent matrix multiplication.

(iii) The rotation of a vector by multiplication of a 3 × 3 rotation matrix times a 3 × 1
vector requires only 9 multiplications and 6 additions.

(iv) The number of multiplications and additions for the equivalent quaternion operation
will depend upon the form which one uses for the quaternion vector rotation. Using
the identity 1 = q2R + qP · qP , it is possible to show that the vector part of qx̃q−1 in
part (b) above can be rearranged to the form:

~x+ 2[qP × (qP × ~x) + qR(qP × ~x)]

Since qP × ~x need only be evaluated once, this takes only 18 multiplications and 12
additions. However, no matter what form one tries, the quaternion approach will
always take more operations than the matrix/vector approach for vector rotation.

Part (e): For constant rotation about a fixed unit length axis ~ω, the orientation of a rigid
body is described by R(t) = exp(ω̂t), where t is time and ω̂ = (~ω)∨. The equivalent unit
quaternian is

q =

(
cos

(
t

2

)
, sin

(
t

2

)
~ω

)
where the quarternian is expressed in “vector form,” consisting of real part, qR, and vector
part, ~qV : q = (qR, ~qV ). Hence,

q̇ · q∗ =

(
−1

2
sin

(
t

2

)
,
1

2
~ω cos

(
t

2

))(
cos

(
t

2

)
,− sin

(
t

2

)
~ω

)
Using the rule for multiplication of quaternions in vector form 1 yields

q̇ · q∗ = (0,
1

2
~ω) .

Problem # 2: (15 points, Problem 11(a,b,d) in Chapter 2 of the MLS text)

1if quaternians q = (qR, ~qV ) and p = (pR, ~pV ) are multiplied, then the resulting quaternian in vector form
is: q · p = (qRpR − ~qV · ~pV , pR~q + qR~pV − ~qV × ~pV ).
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Part (a): Recall that the matrix exponential of a twist, ξ̂, is:

eφξ̂ = I +
φ

1!
ξ̂ +

φ2

2!
ξ̂2 +

φ3

3!
ξ̂3 + · · ·

First, let’s consider the case of ξ = (v, ω), with ω = 0. If:

ξ̂ =

0 0 vx
0 0 vy
0 0 0


then ξ̂2 = 0. Thus

eφξ̂ =

1 0 φvx
0 1 φvy
0 0 1

 =

[
I ~vφ
~0t 1

]
To compute the exponential for the more general case in which ω 6= 0, let us assume that
||ω|| = 1. In this case, note that ω̂2 = −I, where I is the 2× 2 identity matrix. It is easiest
if we choose a different coordinate system in which to perform the calculations. Let

ξ̂ =

0 −ω vx
ω 0 vy
0 0 0

 =

[
ω̂ ~v
~0T 0

]

Let

g =

[
I ω̂~v
~0T 1

]
Let is define a new twist, ξ̂

′
:

ξ̂
′

= g−1ξ̂g

=

[
I −ω̂~v
0 1

] [
ω̂ ~v
0 0

] [
I ω̂~v
0 1

]
=

[
ω̂ (ω̂2~v + ~v)
0 0

]
=

[
ω̂ 0
0 0

]
where we made use of the identity ω̂2 = −I. That is, we have chosen a coordinate system
in which ξ̂

′
corresponds to a pure rotation. Thus,

eφξ̂
′

=

[
eφω̂ 0
0 1

]
.

Using Eq. (2.35) on page 42 of the MLS text:

eφξ̂ = geφξ̂
′

g−1 =

[
eφω̂ (I − eφω̂)ω̂~vφ
0 1

]
which is clearly an element of SE(2).
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Part(b): It is easy to see from part (a) that the twist ξ = (vx, vy, 0)T maps directly to the
planar translation (vx, vy).

The twist corresponding to pure rotation about a point ~q = (qx, qy) can be thought of as the
Ad-transformation of a twist, ξ

′
= (0, 0, ω), which is pure rotation, by a transformation, g,

which is pure translation by ~q:

ξ = Adhξ
′
= (hξ̂

′
h−1)∨ (1)

where

h =

[
I ~q
0 1

]
and x̂i

′

=

[
ω̂ 0
~0T 0

]
.

Expanding Eq. (1) gives:

ξ = (hξ̂
′
h−1)∨ =

[
ω̂ −ω̂~q
~0T 0

]∨
=

 qy
−qx

1


assuming ω = 1.

Part (d): Let

g =

[
A ~p
~0T 1

]
where A ∈ SO(2) and ~p ∈ R2. Then direct calculation shows that ġg−1 and g−1ġ are twists.
The spatial and body velocities have definitions analogous to those for 3-dimensional rigid
bodies.

Problem #3: (15 points)

Part (a): Elements of SU(2) have the form:

[
z w
−w∗ z∗

]
=

[
(a+ ib) (c+ id)
−(c− id) (a− ib)

]
where zz∗ + ww∗ = a2 + b2 + c2 + d2 = 1. To show that the matrices[

1 0
0 1

] [
i 0
0 −i

] [
0 1
−1 0

] [
0 i
i 0

]
form a basis for SU(2), let A, B, C, and D be real numbers. Then, the matrix formed by
the product of A, B, C,and D with these matrices is:

A

[
1 0
0 1

]
+B

[
i 0
0 −i

]
+ C

[
0 1
−1 0

]
+D

[
0 i
i 0

]
=

[
A+ iB C + iD
C − iD A− iB

]
is a matrix in SU(2) for any choice of A, B, C, and D where A2 +B2 +C2 +D2 = 1. Thus
these four basis matrices for SU(2) are in 1-to-1 correspondence with the 1, i, j, and k basis
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elements for the quaternions. Thus, the scalar elements A, B, C, and D are in one-to-one
correspondence with the scalar elements of unit quaternions. That is, let a unit quaternion
be represented by q = λ1 + λ2i+ λ3j + λ4k = (λ1, λ2, λ3, λ4). The correspondence is then:

λ1 = A = Re(z) =
z + z∗

2
(2)

λ2 = B = Im(z) =
i(z∗ − z)

2
(3)

λ3 = C = Re(w) =
w + w∗

2
(4)

λ4 = D = Im(w) =
i(w∗ − w)

2
(5)

Part (b):The unit quaternion elements are in one-to-one correspondence with the Euler
parameters of a rotation: (λ1, λ2, λ3, λ4) = (cos φ

2
, ωx sin φ

2
, ωy sin φ

2
, ωz sin φ

2
). φ is the rotation

about an axis represented by a unit vector ~ω = [ωx ωy ωz]
T . A 2× 2 complex matrix which

represents an arbitrary rotation as a function of the z-y-x Euler angles can be developed as
the product of 2× 2 complex matrices which represent rotations about the z, y, and x axes.
A rotation about the x-axis of amount γ has the 2 × 2 representation (since λ1 = cos γ

2
,

λ2 = sin γ
2
, λ3 = λ4 = 0):[

(cos γ
2

+ i sin γ
2
) 0

0 (cos γ
2
− i sin γ

2
)

]
=

[
ei

γ
2 0

0 e−i
γ
2

]
Similarly, a rotation of amount φ about the y-axis can be represented as:[

cos φ
2

sin φ
2

− sin φ
2

cos φ
2

]
while a rotation of amount ψ about the z-axis can be represented as:[

cos ψ
2

i sin ψ
2

i sin ψ
2

cos ψ
2

]
The product of these matrices yields the result.

Part (c):
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φ = 2 cos−1(a) = 2 cos−1(
z + z∗

2
) (6)

ωx =
b√

b2 + c2 + d2
=

(z− z∗)/2√
(z−z

∗

2
)2 + ww∗

(7)

ωy =
c√

b2 + c2 + d2
=

(w + w∗)/2√
(z−z

∗

2
)2 + ww∗

(8)

ωz =
d√

b2 + c2 + d2
=

(w −w∗)/2√
(z−z

∗

2
)2 + ww∗

(9)

Problem 4: (10 points) Let Z-X-Y Euler angles be denoted by ψ, φ, and γ. First let’s
develop an expression for the net rotation due to Z-Y-X rotations. First find expressions for
each of the individual rotation matrices:

Rψ = Rot(~z, ψ) =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 Rφ = Rot(~y, φ) =

 cosφ 0 sinψ
0 1 0

− sinφ 0 cosφ



Rγ = Rot(~x, γ) =

1 0 0
0 cos γ − sin γ
0 sin γ cos γ


where the notation R(~p, α) means rotation by angle α about axis ~p. The final expression is
obtained by multiplying these matrices:

R(ψ, φ, γ) = RψRφRγ =

cψcφ cψsφsγ − sψcγ cψsφcγ + sψsγ
sψcφ sψsφsγ + cψcγ sψsφcγ − cψsγ
−sφ cφsγ cφcγ


where sψ = sinψ, cφ = cosφ, etc.

To find an expression for the angles ψ, φ, and γ as a function of the aij in the matrix

R =

a11 a12 a13
a21 a22 a23
a31 a32 a33


note that sinφ = −a31. There are two solutions to this equation: φ1 = sin−1(a31) and
φ2 = π − φ1. Manipulation of the (a11, a21) and (a32, a33) terms yields:

ψ = Atan2[
a21

cosφ
,
a11

cosφ
]; γ = Atan2[

a32
cosφ

,
a33

cosφ
].
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