ME 115(a): Solution to Homework #3
(Winter 2016)

Problem #1: (20 points, Problem 6(a,b,d,e) in Chapter 2 of MLS).

Part (a): Let Q and P be unit quaternions—i.e., QQ* = PP* = 1. The set of unit
quaternions is a group if you can show that: (i) multiplication is associative; (ii) the product
of group elements yields a group element; (iii) the set contains an identity element; (iv) every
group element has an inverse element, and the inverse is in the group.

(i) It is easy to show that quaternion multiplication is associative, since multiplication of
all of the quaternian basis elements for quaternians is an associative process.

(ii) The product of unit quaternions, QP, is a unit quaternion: QP(QP)* = QPP*Qx =
RE" =1
(iii) The identity quaternion is: e = (1,0,0,0) =1+0-i+0-j+0- k.

(iv) The inverse of any unit quaternion @ is Q*, which is also a unit quaternion (since

Q(Q7) =Q'Q = () =1"=1).

Part (b): If a unit quaternion, g, has real part qr and pure part gp, and T = [z; x5 z3]" is
represented as a pure quaternion Z = (0, 1, Z2, 23) = 0+ Z, then:
g = Z-qp (4 real part)
+ qr?— (¥ xgqp (4 pure part)
Similarly, the product ¢Zg~! is:

¢3¢ = qr(T-qp) —qp- (T — T X qp) (4 real part)

+ qr(qr® — 2 x qp) + (¥ qp)qp + qp X (qrZ¥ — Z X qp) (4 pure part)
The real part of qzq~? is:
(Z-qp)gr — qp - [qr% — (¥ X qp)] = qr(Z - qp) — qr(Z-qp) + qp - (X X qp) =0

Thus gzq~! is a pure quaternion when 7 is.
The vector part of gZg~! is:

qr(qrT — T x qp) + (Z-qp)ap +qp X (qrT — T X qp)
= qr’T— qr(T X qp) + (T~ qp)qp + qrlqp X T) — qp X (Z X qp)

GrT — 2qr(Z X qp) + (T - qp)qr — [(qp - qp)T — (T - qp)qp]
= (g% — (ap - qp)]T+2[(Z - qp)ap + qrlqp X )]

—

where we have used the triple cross product identity: @ x (b x @) = (@- &)b — (@ - b)@

Part (d):



(i) If Ay, Ay € SO(3), then each of the 9 elements in the product matrix A; A, requires
3 multiplications and 2 additions. Hence, the product A; A, requires a total of 27
multiplications and 18 additions.

(ii) Let ¢; and g9 be quaternions, with respective real and vector parts qir, gor and ¢ p, Gap-
The real part of the quaternion product, ¢1rgar — ¢ip - Go2p, requires 4 multiplications
and 3 additions (where the subtraction is counted as an addition). The pure part,
Bp = qirGer + @rGiP + (1P X Gap, can be evaluated in 12 multiplications and 9
additions. Thus, the quaternion product requires a total of 16 multiplications and 12
additions. It is therefore more efficient than the equivalent matrix multiplication.

(iii) The rotation of a vector by multiplication of a 3 x 3 rotation matrix times a 3 x 1
vector requires only 9 multiplications and 6 additions.

(iv) The number of multiplications and additions for the equivalent quaternion operation
will depend upon the form which one uses for the quaternion vector rotation. Using
the identity 1 = ¢% + ¢p - qp, it is possible to show that the vector part of ¢z¢™' in
part (b) above can be rearranged to the form:

T+ 2[gp % (qp X ¥) + qrlqp X 7)]

Since gp X T need only be evaluated once, this takes only 18 multiplications and 12
additions. However, no matter what form one tries, the quaternion approach will
always take more operations than the matrix/vector approach for vector rotation.

Part (e): For constant rotation about a fixed unit length axis &, the orientation of a rigid
body is described by R(t) = exp(wt), where t is time and w = (J)¥. The equivalent unit

quaternian is
t A
=|cos|=<|,sin| =< |w
1 2 ) 2

where the quarternian is expressed in “vector form,” consisting of real part, qr, and vector
parta jV g = (QRa CTV) Hence,

o = (o (9 oo () (o3 (2)3)

Using the rule for multiplication of quaternions in vector form ! yields

Problem # 2: (15 points, Problem 11(a,b,d) in Chapter 2 of the MLS text)

Lif quaternians ¢ = (¢gr,@y) and p = (pgr, Py ) are multiplied, then the resulting quaternian in vector form
ist ¢-p = (qrPR — Qv - Dv,PRT+ qrDV — GV X PV ).



Part (a): Recall that the matrix exponential of a twist, £, is:

¢A 2A2 ¢3A3
ﬂf‘FEé +—,5 +

¢€:]
c + 31

First, let’s consider the case of £ = (v,w), with w = 0. If:

R 0 0 v,
E=10 0 v,
00 0

then 52 = 0. Thus
R 1 0 ¢v, S,
B
00 1

To compute the exponential for the more general case in which w # 0, let us assume that
l|w|| = 1. In this case, note that @? = —1I, where I is the 2 x 2 identity matrix. It is easiest
if we choose a different coordinate system in which to perform the calculations. Let

Let

Let is define a new twist, £

§ =gy
| —wv| @ v [ WU
0 1 0 0|0 1
o @T+0)] o 0
10 0 0 0
where we made use of the identity @? = —1I. That is, we have chosen a coordinate system
in which ¢ corresponds to a pure rotation. Thus,
M Pw 0
I
e = { i 1} |

Using Eq. (2.35) on page 42 of the MLS text:

- N pw LW\ N7
e% g€ g1 [60 (7 “ )ww]

which is clearly an element of SE(2).



Part(b): It is easy to see from part (a) that the twist £ = (vy,v,,0)” maps directly to the
planar translation (v, v,).

The twist corresponding to pure rotation about a point ¢= (¢, ¢,) can be thought of as the
Ad-transformation of a twist, & = (0,0,w), which is pure rotation, by a transformation, g,
which is pure translation by ¢

¢ =Adp¢ = (h€'h™)Y (1)

I q ~ w0
h—{o 1] and $Z—|:(—)»T 0].

where

Expanding Eq. (1) gives:

~ A—»\/ qy
A —Ww
fz(h£h1>vz[5T Oq] = |-a
1

assuming w = 1.
Problem #3: (10 points). Problem 7 in Chapter 2 of MLS.

We can use the “particle counting” argument used in a previous homework, and also used
in class. In this approach, a rigid body in n-dimensional Euclidean space is made up of
particles, where each particle has n DOF when it is not constrained to be in a rigid body.
The key thing to recognize is the number of constraints needed to join the particles to make
a rigid body. For a particle in n dimensional space, the total number of DOF for N particles,
which are not constrained to be a rigid body, is nN. The first particle, P;, has no constraints
on its motion. Particle P, has one constraint on it’s location to be joined to the rigid body,
etc. Partial P, has (n — 1) constraints. Particles P, .1, ..., Py have n constraints. So, the
total DOF has of the rigid body is the sum of DOF of all particles without constraints, minus
the number of constraints:

n n

Nn — [(N—n)n—Z(n—i) = n2—Z(n—i):n2 —%(n2+n):%(n2+n)

i—1 i=1

Problem #3: (15 points)
Part (a): Elements of SU(2) have the form:
z w| | (a+1ib) (c+1id)
*z*|  |—(c—id) (a—ib)

—w* z
where zz* + ww* = a® + b* + ¢ + d> = 1. To show that the matrices

R I e R K B

4



form a basis for SU(2), let A, B, C, and D be real numbers. Then, the matrix formed by
the product of A, B, C,and D with these matrices is:

10 i 0 0 1 0 i] [A+iB C+iD
A{o 1}“9{0 —i]+c[—1 O}+D{i 0]_[C—iD A—iB

is a matrix in SU(2) for any choice of A, B, C, and D where A*> + B?> 4+ C? + D? = 1. Thus
these four basis matrices for SU(2) are in 1-to-1 correspondence with the 1, i, j, and k basis
elements for the quaternions. Thus, the scalar elements A, B, C, and D are in one-to-one
correspondence with the scalar elements of unit quaternions. That is, let a unit quaternion
be represented by g = A1 + Ao + A3j + Ak = (A1, A2, A3, A\g). The correspondence is then:

M = A= Re(z) = ”22 2)
b = B=Im(z) =" %) 3)
Ns = C=Re(w) = wz“’* (@)
A = D=Im(w) =" )

Part (b):The unit quaternion elements are in one-to-one correspondence with the Euler

parameters of a rotation: (Ay, Ay, Az, A\y) = (cos %, Wy Sin %, wy sin %, w, sin %) ¢ is the rotation
about an axis represented by a unit vector @ = [w, w, w.|". A 2 X 2 complex matrix which
represents an arbitrary rotation as a function of the z-y-x Euler angles can be developed as
the product of 2 x 2 complex matrices which represent rotations about the z, y, and x axes.

A rotation about the x-axis of amount + has the 2 x 2 representation (since A\; = cos I,
)\2 = sin%, )\3 = )\4 = O)

[(cosg+7;sing) 0 )} _ [ez 0 ]

.. i
0 (cos 2 —ising 0 ez
Similarly, a rotation of amount ¢ about the y-axis can be represented as:

¢ b
|: CO‘S §¢ Sin g:|
— Sin 5 COS b)

while a rotation of amount ¢ about the z-axis can be represented as:
coS % 1sin %
P P

7 S1n 5 COS 5

The product of these matrices yields the result.

Part (c):



z+z*

¢ = 2cos *(a) =2cos *( 5 ) (6)

L b (z—z)/2 7)
SR ey iy e

2
c w—l—w)/2

V(=
_ -
\/m \/(z Z* 2 + ww*
(w
L/

2
d B w*)/2
Vbt +d? 2 L ww*

zz*

2

Problem 4: (10 points) Let Z-X-Y Euler angles be denoted by v, ¢, and 7. First let’s
develop an expression for the net rotation due to Z-Y-X rotations. First find expressions for
each of the individual rotation matrices:

costy —siny 0 cos¢ 0 siny
Ry = Rot(Z,¢) = |sin¢ cosyp 0 Ry, = Rot(y,¢) = 0 1 0
0 0 1 —sing 0 cos¢
1 0 0

R, = Rot(Z,v) = |0 cosy —sinvy
0 siny cosvy
where the notation R(p,«) means rotation by angle « about axis p. The final expression is

obtained by multiplying these matrices:

e cpspsy — sey  cbspey + spsy
R(Y,¢,7) = RyRyR, = |svchd sspsy + chey spspcy — cpsy
—S¢ cosy cocry

where s1) = sin ), c¢ = cos ¢, etc.

To find an expression for the angles v, ¢, and v as a function of the a;; in the matrix

11 Q12 413
R = |aa a2 ax

a3; azz ass

note that sin¢ = —ag;. There are two solutions to this equation: ¢, = sin_l(agl) and
¢o = m — ¢1. Manipulation of the (a1, as1) and (agz, asz) terms yields:

A 21 Q11 4 Atan2 232 ass
¥ = Atan [Cosqb COSQS] 7 = Atan [cos¢ cos ¢




