ME 115(a): Solution to Homework #4

Problem 1:

Let the three rotating frames be termed the “i-frame,” “¢-frame,” and the “y-frame.” The
spatial angular velocity of the body will be the same as the spatial angular velocity of the
~-frame:

& = R'&), + RO& + TR, (1)
where J}f’p is the body angular velocity of the v-frame, “RY is the orientation of the 1)-frame
with respect to the stationary frame, etc. The body angular velocities are simply:

0 0 0
s=lo] a=1|s] =0
d 0 ¥

while the orientations of the frames are:

cosy —siny 0 cos¢p 0 sing
SRY = |sint cos¢p 0 VR = 0 1 0
0 0 1 —sing 0 cos¢

cosy —siny 0
’RY = |siny cosy O
0 0 1

Using these frames, one can determine:

SR — SRYY R? SRY = SRYY RO R

Substituting into Equation (1) results in:

0 —¢siny A cos Y sin ¢ —¢sin ) + 4 cos 1 sin ¢
W= 0|+ deosty | + |sinsing | = $cosy + 4 sin v sin ¢ (2)
0 0 Y cos ¢ ¥+ 4 cos ¢

Problem 2: (Problem 11(d,e) in Chapter 2 of MLS).
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Part (d): Let



where A € SO(2) and 5 € R?. Then direct calculation shows that gg~' and g~'¢ are twists.

The spatial and body velocities have definitions analogous to those for 3-dimensional rigid
bodies

Part (e): Let V? denote the planar body velocity:

~b b
Ab_ C_‘{ v
"=l

where & € s0(2), @ € R?. Then the planar spatial velocity is:

Ve = Ad, VP = gVbg!
R j] [t @] [RT —RTﬁ]

— 107 1] 0T o] |0 0
_ [R&PRT —ROPRTH+ R
— | o7 0

Therefore:
&® = RO’RT  #° = R — ROPRTj = Ri® — &°p

The spatial angular velocity can be simplified as follows:

~s _ pebpT _ |T11 2| |0 —w| [T | 0 —det(R)| |0 —1| .,
W= Ro'R" = |"l“21 7’22:| |}d 0 :| |:’f’12 7“22:| - {det(R) 0 - 1 0 -
Using this result:
7 = Ri®— "= Ri®+w [_p;} (3)
Therefore:
s py
" m -1 {—px] v
0" 1
Problem 3: (Problem 14 in Chapter 2 of MLS).
Part (a): Let g € SE(3) denote a homogeneous transformation matrix:
_|R P _|R pR
o I ]
Then: -
. [RT —RTjp RT —(RTp)RT RT —R"p
9 = |gar Adgfl = | rr T = T
0 1 0 R 0 R

where we have made use of the identity (@) = RTpR. Let’s now compute AdyAd,-1:

R pR][RT —RTp] [T 0
AdgAdgl:[o RHO RT |~ |0 I
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Hence, Ad,-1 must equal (Ad,)~" since Ad,Ad,-1 = 1I.

Part (b): If
. {31 D1 . 52 D2
S=16m 1 P27 06T 1
Then
_ |RiRy P+ Rapo
9192 = 5T 1
Hence: _ . L
Ad _|RiRy (p1 + Rip2) Ri Ry
gi192 I 0 R1R2
_ RiRy piRiRy+ R1ﬁ2RC1FR1R2
0 RiR,
_ RiRy p1RiRy + RipaRy
0 RiR,
_|Br ;iR Ry paR2|
- I 0 Rl } [O R2 } - Ad91Ad92

Problem 4: (Problem 17(a,b) in Chapter 2 of MLS).

Part(a): Let & and & denote the coordinates of two screws, as described in Frame A. Let
frame B be displaced relative to frame A by g. Let 1, and 7y be the representation of these
screws in Frame B. Hence:

51 = AdgTh 52 = Adg’f]g

Letting o denote the reciprocal product:

710 1
Mmon =1 I 0 72

~

= (Adgflgl)T

} (Ad, 1)
=T <Adng

0

I 0
0 I
)

A direct calculation shows that

I 0

0 I 0 I
Adng[ ]Adglz }

Hence, n; o np = & 0 &s.

Part(b): Using the same notation as in part (a):

mene =1
— (Adgflgl)T(Adgflgg)
= €l AT Ady1&

=& Lé :pﬁz} §2 # &1 &



Problem 5: (Problem 18(b,c,d,e) in Chapter 2 of MLS.)

Part (b): There are many ways to solve this problem. For example, you could either start
with Proposition 2.14 or Proposition 2.15 on page 59 of MLS which relate the velocities of
three frames, A, B, and C. Let’s choose Prop. 2.15:

Vh = Ad, V) + V) (4)
Using the fact that

vi= e

Eq. (??) can be written as:

v o= Mo O T+ )
_ PB R(ic f-g,Tc —%zg;;ﬁbc Vv Roac R(lc Vv
[ el Al Ale o
_ z —%igfmq F%b é;}vg_%Adevg

— Ad_p,,p, Vi + Adg,, V"

abPbc ¥ ab

Part (c): Let frames A and B be stationary “spatial” frames, and let Frame C be fixed to
a moving body. Let V;" be the hybrid velocity of the body, as seen by an observer in the B
frame. If we now want to express this velocity as seem by an observer in the A frame (i.e.,
changing the spatial frame), we need to calculate V. You can do this using the results of
part (b) of this problem (which was not assigned), which derived the result:

Vi = Ad_p,p, Vi + Adg,, Vi, (6)

abPbc

If you chose this approach, then since A and B are stationary, V* = 0. Hence, Eq. (??)

takes the form:
‘/a}; = AdRab ‘/Zé

Hence, the hybrid velocity is dependent on the orientation of the spatial frame, but not its
position.

Alternatively, if you don’t want to rely upon part (b), you can recall that the expression for
the hybrid velocity is: '
Vh — ﬁac
ac JJ’S

ac

Since Pue = Pap + RapPhe, and pyp, is constant:
ﬁac = Rabﬁbc-
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Similarly, &, = RapWpe. Hence, V;’Z is dependent of p,;, but not Ry.

Part (d): Let A be a stationary spatial frame. Let B and C be two different frames attached
to a moving body. Let us assume that the velocity of the rigid body is given by V. If we
now switch the location of the body fixed frame from position B to position C, the hybrid
velocity of the body is given by V. Since B and C are both fixed in the body, then V" =0
in Eq. (?7?7). Hence Eq. (??) reduces to:
VG}Z = Ad_Rabpbc va}ll?

Hence, the hybrid velocity in only dependent on py., the position of the body frame, and not
on Ry, the orientation of the body fixed frame. Alternatively, you could compute V" in a
“brute force” way:

Vh _ ﬁac _ % (ﬁqb + Rabﬁbc) _ ﬁqb + @ZbRabﬁbC)
e (‘?ac (Rach:c> Y (RabRbch? Rgb)v
— |:ﬁab +@§2Rabﬁbc) — Ad_R Vi

C
abPbe ¥ ab
wab

Thus, the result only depends upon pj., and not Ry,.

Part (e): Let the position and orientation of a moving rigid body be given by R(t) and
p(t). Let V? be the body velocity of the rigid body, and let F* be a wrench applied to the
body, expressed in body coordinates. The power applied to the body due to this wrench is
given by:

Vb . Fb — (Vb)TFb (7>
Let V" denote the velocity of the body in hybrid coordinates. Similarly, define the hybrid
wrench to be F". We will define F'* to be the wrench that preserves the amount of power
in Eq. (77):

Vb X Fb — (Vb)TFb _ Vh ) Fh
— (Vh)T Fh

Hence, it must be true that:



