
ME 115(a): Solution to Homework #4

Problem 1:

Let the three rotating frames be termed the “ψ-frame,” “φ-frame,” and the “γ-frame.” The
spatial angular velocity of the body will be the same as the spatial angular velocity of the
γ-frame:

~ωs = SRψ~ωbψ + SRφ~ωbφ + SRγ~ωbγ (1)

where ~ωbψ is the body angular velocity of the ψ-frame, SRψ is the orientation of the ψ-frame
with respect to the stationary frame, etc. The body angular velocities are simply:

~ωbψ =




0
0

ψ̇


 ~ωbφ =




0

φ̇

0


 ~ωbγ =




0
0
γ̇




while the orientations of the frames are:

SRψ =




cosψ − sinψ 0
sinψ cosψ 0

0 0 1


 ψRφ =




cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ




φRγ =




cos γ − sin γ 0
sin γ cos γ 0

0 0 1




Using these frames, one can determine:

SRφ = SRψψRφ SRγ = SRψψRφφRγ.

Substituting into Equation (1) results in:

~ωs =




0
0

ψ̇


 +



−φ̇ sinψ

φ̇ cosψ
0


 +



γ̇ cosψ sin φ
γ̇ sinψ sinφ
γ̇ cosφ


 =



−φ̇ sinψ + γ̇ cosψ sin φ

φ̇ cos γ + γ̇ sinψ sin φ

ψ̇ + γ̇ cos φ


 (2)

Problem 2: (Problem 11(d,e) in Chapter 2 of MLS).

Part (d): Let

g =

[
A ~p
~0T 1

]
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where A ∈ SO(2) and ~p ∈ R2. Then direct calculation shows that ġg−1 and g−1ġ are twists.
The spatial and body velocities have definitions analogous to those for 3-dimensional rigid
bodies

Part (e): Let V̂ b denote the planar body velocity:

V̂ b =

[
ω̂b ~vb

~0T 0

]

where ω̂b ∈ so(2), ~vb ∈ R2. Then the planar spatial velocity is:

V̂ s = AdgV̂
b = gV̂ bg−1

=

[
R ~p
~0T 1

] [
ω̂b ~vb

~0T 0

] [
RT −RT ~p
~0T 0

]

=

[
Rω̂bRT −Rω̂bRT~p+R~vb

~0T 0

]

Therefore:
ω̂s = Rω̂bRT ~vs = R~vb − Rω̂bRT ~p = R~vb − ω̂s~p

The spatial angular velocity can be simplified as follows:

ω̂s = Rω̂bRT =

[
r11 r12
r21 r22

] [
0 −ω

ω 0

] [
r11 r21
r12 r22

]
= ω

[
0 − det(R)

det(R) 0

]
= ω

[
0 −1
1 0

]
= ω̂b

Using this result:

~vs = R~vb − ω̂s~p = R~vb + ωb
[
py
−px

]
(3)

Therefore:

V s =

[
~vs

ωs

]
=


R

[
py
−px

]

~0T 1


V b

Problem 3: (Problem 14 in Chapter 2 of MLS).

Part (a): Let g ∈ SE(3) denote a homogeneous transformation matrix:

g =

[
R ~p
~0T 1

]
Adg =

[
R p̂R

0 R

]

Then:

g−1 =

[
RT −RT ~p
~0T 1

]
Adg−1 =

[
RT − ̂(RT ~p)RT

~0T RT

]
=

[
RT −RT p̂

0 RT

]

where we have made use of the identity ̂(RT~p) = RT p̂R. Let’s now compute AdgAdg−1 :

AdgAdg−1 =

[
R p̂R

0 R

] [
RT −RT p̂

0 RT

]
=

[
I 0
0 I

]
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Hence, Adg−1 must equal (Adg)
−1 since AdgAdg−1 = I.

Part (b): If

g1 =

[
R1 ~p1

~0T 1

]
g2 =

[
R2 ~p2

~0T 1

]

Then

g1g2 =

[
R1R2 ~p1 +R1~p2

~0T 1

]

Hence:

Adg1g2 =

[
R1R2 (~p1 +R1~p2)

ˆR1R2

0 R1R2

]

=

[
R1R2 p̂1R1R2 +R1p̂2R

T
1
R1R2

0 R1R2

]

=

[
R1R2 p̂1R1R2 +R1p̂2R2

0 R1R2

]

=

[
R1 p̂1R1

0 R1

] [
R2 p̂2R2

0 R2

]
= Adg1Adg2

Problem 4: (Problem 17(a,b) in Chapter 2 of MLS).

Part(a): Let ξ1 and ξ2 denote the coordinates of two screws, as described in Frame A. Let
frame B be displaced relative to frame A by g. Let η1 and η2 be the representation of these
screws in Frame B. Hence:

ξ1 = Adgη1 ξ2 = Adgη2

Letting ◦ denote the reciprocal product:

η1 ◦ η2 = ηT
1

[
0 I

I 0

]
η2

= (Adg−1ξ1)
T

[
0 I

I 0

]
(Adg−1ξ2)

= ξT
1

(
AdT

g−1

[
0 I

I 0

]
Adg−1

)
ξ2

A direct calculation shows that

AdTg−1

[
0 I

I 0

]
Adg−1 =

[
0 I

I 0

]

Hence, η1 ◦ η2 = ξ1 ◦ ξ2.

Part(b): Using the same notation as in part (a):

η1 · η2 = ηT
1
η2

= (Adg−1ξ1)
T (Adg−1ξ2)

= ξT
1
AdTg−1Adg−1ξ2

= ξT
1

[
I −p̂

p̂ I − p̂2

]
ξ2 6= ξ1 · ξ2
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Problem 5: (Problem 18(b,c,d,e) in Chapter 2 of MLS.)

Part (b): There are many ways to solve this problem. For example, you could either start
with Proposition 2.14 or Proposition 2.15 on page 59 of MLS which relate the velocities of
three frames, A, B, and C. Let’s choose Prop. 2.15:

V b
ac = Adg−1

bc

V b
ab + V b

bc (4)

Using the fact that

V h
ac =

[
Rac 0
0 Rac

]
V b
ac

Eq. (??) can be written as:

V h
ac =

[
Rac 0
0 Rac

]
(Adg−1

bc

V b
ab + V b

bc)

=

[
Rac 0
0 Rac

] [
RT
bc −RT

bcp̂bc
0 RT

bc

]
V b
ab +

[
Rac 0
0 Rac

]
V b
bc

=

[
Rab −Rabp̂bc
0 Rab

]
V b
ab +

[
Rab 0
0 Rab

] [
Rbc 0
0 Rbc

]
V b
bc

=

[
I − ̂(Rabpbc)
0 Rab

] [
Rab 0
0 Rab

]
V b
ab + AdRab

V h
bc

= Ad−Rabpbc
V h
ab + AdRab

V h
bc

(5)

Part (c): Let frames A and B be stationary “spatial” frames, and let Frame C be fixed to
a moving body. Let V h

bc be the hybrid velocity of the body, as seen by an observer in the B
frame. If we now want to express this velocity as seem by an observer in the A frame (i.e.,
changing the spatial frame), we need to calculate V h

ac. You can do this using the results of
part (b) of this problem (which was not assigned), which derived the result:

V h
ac = Ad−Rabpbc

V h
ab + AdRab

V h
bc (6)

If you chose this approach, then since A and B are stationary, V h
ab = 0. Hence, Eq. (??)

takes the form:
V h
ac = AdRab

V h
bc

Hence, the hybrid velocity is dependent on the orientation of the spatial frame, but not its
position.

Alternatively, if you don’t want to rely upon part (b), you can recall that the expression for
the hybrid velocity is:

V h
ac =

[
~̇pac
~ωsac

]

Since ~pac = ~pab +Rab~pbc, and ~pab is constant:

~̇pac = Rab~̇pbc.
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Similarly, ~ωac = Rab~ωbc. Hence, V h
ac is dependent of ~pab, but not Rab.

Part (d): Let A be a stationary spatial frame. Let B and C be two different frames attached
to a moving body. Let us assume that the velocity of the rigid body is given by V h

ab. If we
now switch the location of the body fixed frame from position B to position C, the hybrid
velocity of the body is given by V h

ac. Since B and C are both fixed in the body, then V h
bc = 0

in Eq. (??). Hence Eq. (??) reduces to:

V h
ac = Ad−Rabpbc

V h
ab

Hence, the hybrid velocity in only dependent on pbc, the position of the body frame, and not
on Rbc, the orientation of the body fixed frame. Alternatively, you could compute V h

ac in a
“brute force” way:

V h
ac =

[
~̇pac
~ωac

]
=

[
d
dt

(~pab +Rab~pbc)

(ṘacR
T
ac)

∨

]
=

[
~̇pab + ω̂sabRab~pbc)

(ṘabRbcR
T
bcR

T
ab)

∨

]

=

[
~̇pab + ω̂sabRab~pbc)

~ωsab

]
= Ad−Rabpbc

V h
ab

Thus, the result only depends upon ~pbc, and not Rbc.

Part (e): Let the position and orientation of a moving rigid body be given by R(t) and
~p(t). Let V b be the body velocity of the rigid body, and let F b be a wrench applied to the
body, expressed in body coordinates. The power applied to the body due to this wrench is
given by:

V b · F b = (V b)TF b (7)

Let V h denote the velocity of the body in hybrid coordinates. Similarly, define the hybrid
wrench to be F h. We will define F h to be the wrench that preserves the amount of power
in Eq. (??):

V b · F b = (V b)TF b = V h · F h

= (V h)TF h

= (

[
R 0
0 R

]
V b)TF h

= (V b)T
[
RT 0
0 RT

]
F h

Hence, it must be true that:

F b =

[
RT 0
0 RT

]
F h or F h =

[
R 0
0 R

]
F b
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