
ME 115(a): Solution to Homework #4
(Winter 2009/2010)

Problem 1: (10 points)

The Euler-Angle representation of the moving body’s orientation is

R = RψRφRγ

where Rψ ∈ SO(3) represents rotation by angle ψ about the body fixed z-axis, Rφ ∈ SO(3)
represents rotation by angle φ about the body fixed y-axis, and Rγ ∈ SO(3) represents
rotation by angle γ about the body fixed z-axis:

Rψ =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 Rφ =

 cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ



Rγ =

cos γ − sin γ 0
sin γ cos γ 0

0 0 1


The spatial angular velocity of the rigid body is:

ω̂s = ṘR−1 = (ṘψRφRγ +RψṘφRγ +RψRφṘγ)R
−1
γ R−1

φ R−1
ψ

= ṘψR
−1
ψ +Rψ(ṘφR

−1
φ )R−1

ψ +RψRφ(ṘγR
−1
γ )R−1

φ R−1
ψ

= ω̂sψ +Rψω̂
s
φR

−1
ψ +RψRφω̂

s
γR

−1
φ R−1

ψ (1)

where ω̂sψ = ṘψR
−1
ψ , ω̂sφ = ṘφR

−1
φ , ω̂sγ = ṘγR

−1
γ . Converting to vector form:

~ωs = (ω̂s)∨ = ~ωsψ +Rψ ~ω
s
φ +RψRφ ~ω

s
γ (2)

The angular velocities are simply:

~ωsψ = (ṘψR
−1
ψ )∨ =

0
0

ψ̇

 ~ωsφ = (ṘφR
−1
φ )∨ =

0

φ̇
0

 ~ωsγ = (ṘγR
−1
γ )∨

0
0
γ̇


Substituting into Equation (2) results in:

~ωs =

0
0

ψ̇

 +

−φ̇ sinψ

φ̇ cosψ
0

 +

γ̇ cosψ sinφ
γ̇ sinψ sinφ
γ̇ cosφ

 =

−φ̇ sinψ + γ̇ cosψ sinφ

φ̇ cos γ + γ̇ sinψ sinφ

ψ̇ + γ̇ cosφ

 (3)

Problem 2: (15 points) Problem 11(a,b,e) in MLS Chapter 2.
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Part (a): Recall that the matrix exponential of a twist, ξ̂, is:

eφξ̂ = I +
φ

1!
ξ̂ +

φ2

2!
ξ̂2 +

φ3

3!
ξ̂3 + · · ·

First, let’s consider the case of ξ = (v, ω), with ω = 0. If:

ξ̂ =

0 0 vx
0 0 vy
0 0 0


then ξ̂2 = ξ̂3 = · · · = 0. Thus

eφξ̂ =

1 0 φvx
0 1 φvy
0 0 1

 =

[
I ~vφ
~0t 1

]
.

There are two approaches to compute the exponential for the more general case in which
ω 6= 0. One could calculate the expansion in a brute force manner. Alternatively, one could
first compute the exponential for a simpler matrix, and then transform the exponential to
obtain the desired result. First, let’s assume that ||ω|| = 1. In this case, note that ω̂2 = −I,
where I is the 2 × 2 identity matrix. Let

ξ̂ =

0 −ω vx
ω 0 vy
0 0 0

 =

[
ω̂ ~v
~0T 0

]
(4)

be the general twist matrix that we want to exponentiate. Let’s transform this matrix to a
different coordinate system where the exponentiation will be easier. Let

g =

[
I ω̂~v
~0T 1

]
be the rigid body displacement between the coordinate system in which the twist of Equation
(4) is originally defined, and a new coordinate system. In the new coordinate system, the
twist, ξ̂

′
, takes the form::

ξ̂
′

= g−1ξ̂g

=

[
I −ω̂~v
0 1

] [
ω̂ ~v
0 0

] [
I ω̂~v
0 1

]
=

[
ω̂ (ω̂2~v + ~v)
0 0

]
=

[
ω̂ 0
0 0

]
where we made use of the identity ω̂2 = −I. That is, we have chosen a coordinate system
in which ξ̂

′
corresponds to a pure rotation. Thus, the exponentiation of this twist leads to

an algebraically simple formula:

eφξ̂
′

=

[
eφω̂ 0
0 1

]
.
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Using Eq. (2.35) on page 42 of the MLS text, we can transform this result back to the
original coordinates to obtain the exponential that we seek:

eφξ̂ = geφξ̂
′

g−1 =

[
eφω̂ (I − eφω̂)ω̂~vφ
0 1

]
which is clearly an element of SE(2).

Part(b): It is easy to see from part (a) that the twist ξ = (vx, vy, 0)T maps directly to the
planar translation (vx, vy).

The twist corresponding to pure rotation about a point ~q = (qx, qy) can be thought of as the
Ad-transformation of a twist, ξ

′
= (0, 0, ω), which is pure rotation, by a transformation, g,

which is pure translation by ~q:

ξ = Adhξ
′
= (hξ̂

′
h−1)∨ (5)

where

h =

[
I ~q
0 1

]
and ξ̂

′
=

[
ω̂ 0
~0T 0

]
.

Expanding Eq. (5) gives:

ξ = (hξ̂
′
h−1)∨ =

[
ω̂ −ω̂~q
~0T 0

]∨
=

 qy
−qx
1


assuming ω̂ =

[
0 −1
1 0

]
.

Part (e): Let V̂ b denote the planar body velocity:

V̂ b =

[
ω̂b ~vb

~0T 0

]
where ω̂b ∈ so(2), ~vb ∈ R2. Then the planar spatial velocity is:

V̂ s = AdgV̂
b = gV̂ bg−1

=

[
R ~p
~0T 1

] [
ω̂b ~vb

~0T 0

] [
RT −RT~p
~0T 0

]
=

[
Rω̂bRT −Rω̂bRT~p+R~vb

~0T 0

]
Therefore:

ω̂s = Rω̂bRT ~vs = R~vb −Rω̂bRT~p = R~vb − ω̂s~p

The spatial angular velocity can be simplified as follows:

ω̂s = Rω̂bRT =

[
r11 r12
r21 r22

] [
0 −ω
ω 0

] [
r11 r21
r12 r22

]
= ω

[
0 − det(R)

det(R) 0

]
= ω

[
0 −1
1 0

]
= ω̂b
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The spatial translational velocity can be rearranged

~vs = R~vb − ω̂s~p = R~vb + ωb
[
py
−px

]
(6)

so that we reach the desired form

V s =

[
~vs

ωs

]
=

R [
py
−px

]
~0T 1

V b .

Problem 3: (10 points) Problem 13 in MLS Chapter 2.

Let ξa take the form:

ξa =

[
~ρa × ~ωa + h~ωa

~ωa

]
. (7)

Part (a): The configuration of A relative to B is given by g−1
ab :

g−1
ab =

[
RT
ab −RT

ab~pab
~0T 1

]
Thus, the representation of ~ρa and ~ωa in B is:

~ρb = RT
ab~ρa −RT

ab~pab

~ωb = RT
ab~ωa (8)

Substituting these equations into the expression:

ξa =

[
~ρb × ~ωb + h~ωb

~ωb

]
=

[
−RT

abω̂a~ρa −RT
abp̂ab~ωa + hRT

ab~ωa
RT
ab~ωa

]
=

[
RT
ab −RT

abp̂ab
0 RT

ab

] [
(~ρa × ~ωa + h~ωa

~ωa

]
= Adg−1

ab
ξz (9)

Part (b): The screw is now transformed by a rigid motion g =

[
R ~p
~0T 1

]
. In the new

coordinates, the screw location is described by

~ρ
′

= ~p+R~ρa

~ω
′

= R~ωa
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Hence,

ξ
′

=

[
ρ
′ × ~ω

′
+ h~ω

′

~ω
′

]
=

[
(~p+R~ρa) × (R~ωa) + hR~ωa

R~ωa

]
=

[
R p̂R
0 R

] [
~ρa × ~ωa + h~ωa

~ωa

]
= Adgξ (10)

Problem 4: (10 points) Problem 14 in MLS Chapter 2.

Part (a): Let g ∈ SE(3) denote a homogeneous transformation matrix and Adg the Adjoint
transformation associated to displacement g:

g =

[
R ~p
~0T 1

]
Adg =

[
R p̂R
0 R

]
.

Then:

g−1 =

[
RT −RT~p
~0T 1

]
Adg−1 =

[
RT − ̂(RT~p)RT

~0T RT

]
=

[
RT −RT p̂
0 RT

]
where we have made use of the identity ̂(RT~p) = RT p̂R. Let’s now compute AdgAdg−1 :

AdgAdg−1 =

[
R p̂R
0 R

] [
RT −RT p̂
0 RT

]
=

[
I 0
0 I

]
Hence, Adg−1 must equal (Adg)

−1 since AdgAdg−1 = I.

Part (b): If

g1 =

[
R1 ~p1

~0T 1

]
g2 =

[
R2 ~p2

~0T 1

]
Then

g1g2 =

[
R1R2 ~p1 +R1~p2

~0T 1

]
Hence:

Adg1g2 =

[
R1R2 (~p1 +R1~p2)

ˆR1R2

0 R1R2

]
=

[
R1R2 p̂1R1R2 +R1p̂2R

T
1R1R2

0 R1R2

]
=

[
R1R2 p̂1R1R2 +R1p̂2R2

0 R1R2

]
=

[
R1 p̂1R1

0 R1

] [
R2 p̂2R2

0 R2

]
= Adg1Adg2

Problem 5: (15 points) Problem 18(a,b,c,d) in MLS Chapter 2.
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Part (a): Let

gab(t) =

[
Rab(t) ~dab
~0T 1

]
denote the relative location of a moving body (with a reference frame “B” attached to the
moving body) with respect to a fixed observer in frame “A.” The body velocity of the moving
body is:

~V b
ab = (g−1

ab (t)ġab(t))
∨ =

[
~v2
ab

~ωbab

]
=

[
RT
ab
~̇dab

(RT
abṘab)

∨

]
. (11)

To show the desired result,[
Rab 0
0 Rab

]
~V b
ab =

[
Rab 0
0 Rab

][
RT
ab
~̇dab

~ωbab

]
=

[
RabR

T
ab
~̇dab

Rab~ω
b
ab

]
=

[
~̇dab
~ωsab

]
= ~V h

ab

where we have used the fact that ~ωsab = Rab~ω
b
ab.

Part (b): There are many ways to solve this problem. For example, you could either start
with Proposition 2.14 or Proposition 2.15 on page 59 of MLS which relate the velocities of
three frames, A, B, and C. Let’s choose Prop. 2.15:

V b
ac = Adg−1

bc
V b
ab + V b

bc (12)

Using the fact that

V h
ac =

[
Rac 0
0 Rac

]
V b
ac

Eq. (12) can be written as:

V h
ac =

[
Rac 0
0 Rac

]
(Adg−1

bc
V b
ab + V b

bc)

=

[
Rac 0
0 Rac

] [
RT
bc −RT

bcp̂bc
0 RT

bc

]
V b
ab +

[
Rac 0
0 Rac

]
V b
bc

=

[
Rab −Rabp̂bc
0 Rab

]
V b
ab +

[
Rab 0
0 Rab

] [
Rbc 0
0 Rbc

]
V b
bc

=

[
I − ̂(Rabpbc)
0 I

] [
Rab 0
0 Rab

]
V b
ab + AdRab

V h
bc

= Ad−Rabpbc
V h
ab + AdRab

V h
bc

(13)

Part (c): Let frames A and B be stationary “spatial” frames, and let Frame C be fixed to
a moving body. Let V h

bc be the hybrid velocity of the body, as seen by an observer in the B
frame. If we now want to express this velocity as seem by an observer in the A frame (i.e.,
changing the spatial frame), we need to calculate V h

ac. You can do this using the results of
part (b) of this problem, which derived the result:

V h
ac = Ad−Rabpbc

V h
ab + AdRab

V h
bc (14)
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If you chose this approach, then since A and B are stationary, V h
ab = 0. Hence, Eq. (13)

takes the form:
V h
ac = AdRab

V h
bc

Hence, the hybrid velocity is dependent on the orientation of the spatial frame, but not its
position.

Alternatively, if you don’t want to rely upon part (b), you can recall that the expression for
the hybrid velocity is:

V h
ac =

[
~̇pac
~ωsac

]
Since ~pac = ~pab +Rab~pbc, and ~pab is constant:

~̇pac = Rab~̇pbc.

Similarly, ~ωac = Rab~ωbc. Hence, V h
ac is dependent of ~pab, but not Rab.

Part (d): Let A be a stationary spatial frame. Let B and C be two different frames attached
to a moving body. Let us assume that the velocity of the rigid body is given by V h

ab. If we
now switch the location of the body fixed frame from position B to position C, the hybrid
velocity of the body is given by V h

ac. Since B and C are both fixed in the body, then V h
bc = 0

in Eq. (13). Hence Eq. (13) reduces to:

V h
ac = Ad−Rabpbc

V h
ab

Hence, the hybrid velocity in only dependent on pbc, the position of the body frame, and not
on Rbc, the orientation of the body fixed frame. Alternatively, you could compute V h

ac in a
“brute force” way:

V h
ac =

[
~̇pac
~ωac

]
=

[
d
dt

(~pab +Rab~pbc)

(ṘacR
T
ac)

∨

]
=

[
~̇pab + ω̂sabRab~pbc)

(ṘabRbcR
T
bcR

T
ab)

∨

]
=

[
~̇pab + ω̂sabRab~pbc)

~ωsab

]
= Ad−Rabpbc

V h
ab

Thus, the result only depends upon ~pbc, and not Rbc.

Problem 6: (20 Points) You were asked to calculate the velocity of a moving rigid body
assuming that you know the velocities of 3 non-collinear points (P , Q, and R) in the body.

Let points P , Q, and R be located at positions ~r1, ~r2, and ~r3 with respect to a fixed observer.
Let the velocities of each of these points be ~̇r1, ~̇r2, and ~̇r3. Recall that a spatial velocity has
the form

V̂ s =

[
ω̂s ~vs

~0T 0

]
In general, let ~p denote the location of a particle in the moving body, with respect to the
observing frame. Recall that the velocity of this particle, ~̇p, as seen in the observing frame,

7



is related to the location of the particle (as seen in the stationary observing frame) by
~̇p = V̂ s~p—where we have used the same notation for homogeneous coordinates. Thus, for
each of the particles the following relationship holds:

~̇r1 = ~ωs × ~r1 + ~vs (15)

~̇r2 = ~ωs × ~r2 + ~vs (16)

~̇r3 = ~ωs × ~r3 + ~vs (17)

Hence, we have three simultaneous equations in the unknowns ~ωs and ~vs. To solve these
equations, we follow closely the technique that was used in the handout entitled “ Computing
the Screw Parameters of a Rigid Body Displacement.”

Step 1: subtract Equation 17 from Equations (15) and (16).

~̇r1 − ~̇r3 = ~ωs × (~r1 − ~r3) (18)

~̇r2 − ~̇r3 = ~ωs × (~r2 − ~r3) (19)

Step 2: Take the cross product of the vector (~̇r2 − ~̇r3) with Equation (18).

(~̇r2 − ~̇r3) × (~̇r1 − ~̇r3) = (~̇r2 − ~̇r3) × (~ωs × (~r1 − ~r3)). (20)

Step 3: We now use two facts. First, we use the triple vector identity ~a × (~b × ~c) =

(~a ·~c)~b− (~a ·~b)~c. Second, from Equation (19) we know that ~̇r2− ~̇r3 is orthogonal to ~ω. Hence,
Equation (20) reduces to

(~̇r2 − ~̇r3) × (~̇r1 − ~̇r3) = ~ω[(~̇r2 − ~̇r3) · (~r1 − ~r3)].

The quantity ~ω is then easily found as

~ω = [(~̇r2 − ~̇r3) · (~r1 − ~r3)]
−1(~̇r2 − ~̇r3) × (~̇r1 − ~̇r3).

Step 4: Any one of Equations (15), (16), or (17) could be used to solve for ~vs.
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